
Installation Guide for Qiskit Based
Quantum Programming

Torben Larsen1, Loke Walsted2,
Maria T. Gleerup3, Muyang Liu4, Greyson K. Potter5

{tola1,lokew2}@cs.aau.dk,
maria.tammelin@deic.dk3, muyang.liu@deic.dk4,

greyson.potter@deic.dk5

March, 2025; Version: 1.1
License: Creative Commons CC BY 4.0

1,2Aalborg University, Department of Computer Sci-
ence, Selma Lagerlöfs Vej 300, Aalborg, Denmark
3,4,5Danish e-infrastructure Consortium, Produk-
tionstorvet. Building 426, 2800 Lyngby, Denmark.

Preface

This report describes how to install, configure, and maintain a local core soft-
ware platform that is build around the popular and flexible source code editor
Microsoft Visual Studio Code combined with a selection of added tools, which
in this present version 1.1 consists of Python, Jupyter, Git, ... and the quantum
back-ends are:

• Microsoft Azure Quantum.

• IBM Quantum.

• Amazon Web Services Braket.

The overall objective of this report is to provide the insight and direct guides
to make the following. We wish to establish a simulation, emulation and Quan-
tum Computing hardware management entity on a local laptop or stationary
computer. From this typical computing device we wish to have access to all our
developed code while having easy access to a number of back-ends of different
vendors. We do this by using:

• Microsoft Visual Studio Code as the center of management control. We
install various support code such as Qiskit, Python, matplotlib, numpy
etc.

• Github is used for software sharing and version control. This can also be
coupled to testing of various kind.

• Next, we create a user account on each back-end, we wish to be able
to access – e.g. IBM, Quantinuum (via Azure for example), ... We set
up an automatic control from Visual Studio Code and the back-end via
account and ID information. This can be done for various back-ends, and
all back-ends can now be controlled from Visual Studio Code.

The note should seen as a living document that continuously is updated accord-
ing to its components such as e.g. Microsoft Visual Studio Code and IBM Quan-
tum (Qiskit). There is a Git repository https://github.com/LowkeyCoding/
QuantumSetup for the report where you can always get the most recent ver-
sion. The first registered version of the present report was authored by Torben
Larsen and Loke Walsted. This version 1.0 is published at Zenodo.org with
DOI 10.5281/zenodo.14133923.

To make this report available to more students and researchers, a collaboration
has been established between Aalborg University’s Department of Computer

1

https://github.com/LowkeyCoding/QuantumSetup
https://github.com/LowkeyCoding/QuantumSetup

Science and DeiCs Quantum Department for future versions > 1. All Danish
universities are invited to contribute with feedback and input and encouraged
to share the installation guide with relevant stakeholders and ecosystems.

Torben Larsen
Professor, dr.techn.; AAU, Computer Science
Director of the AAU QUANTUM HUB

Loke Walsted
Stud.Cand.Scient.; AAU, Computer Science

Maria Tammelin Gleerup
Quantum Consultant, DeiC

Muyang Liu
Quantum Computing Infrastructure Developer, DeiC
Postdoctoral Researcher, Centre for Quantum Mathematics, SDU

Greyson Katzel Potter
Quantum Computing Infrastructure Developer, DeiC
Postdoctoral Researcher, Centre for Quantum Mathematics, SDU

12/03/2025

2

Abstract

This report describes how to install, configure, and maintain a local core soft-
ware platform (e.g. your own laptop) that is build around the popular and
flexible source code editor Microsoft Visual Studio Code combined with a se-
lection of added tools, which in version 1.0 consists of Python, Jupyter, Git
etc. Further, it includes installation guides for backends from Microsoft Azure
Quantum, IBM Quantum, and Amazon Web Services Braket. The report and
the included installation recommendations are useful for both beginners and
experienced developers of Qiskit code. Also, the guide presents full instructions
for Microsoft Windows, Linux (Ubuntu), and MacOS operating systems.

3

Contents

1 Introduction 6
1.1 Simulation . 6
1.2 Microsoft Azure Quantum . 7
1.3 Amazon Web Services Braket . 7
1.4 IBM Quantum Computing . 8
1.5 Why Use This Guide? . 8

2 The Basic Tools 10
2.1 Homebrew (MacOS) . 11

2.1.1 Installation . 11
2.1.2 Usage . 12

2.2 Snap (Linux) . 12
2.2.1 Installation . 13
2.2.2 Usage . 13

2.3 Microsoft Visual Studio Code . 13
2.3.1 Installation . 13
2.3.2 Setup . 14

2.4 Python . 15
2.4.1 Installation . 15
2.4.2 Virtual Environment . 15
2.4.3 Installing Packages in Your Virtual Environment 17

2.5 Git . 17
2.5.1 Installation . 17
2.5.2 Setting up SSH (Github) 18
2.5.3 Usage . 20

2.6 Jupyter (Optional) . 21

3 Setting up backends 22
3.1 Virtual Environment . 22

3.1.1 Portable environments . 23
3.1.2 Updating Portable environments 23

3.2 Basic Packages . 23
3.3 Environment File . 23
3.4 Microsoft Azure Quantum . 24

3.4.1 Get the Connection string 24
3.4.2 Login in from python . 24
3.4.3 Running a quantum circuit 25

4

3.5 IBM Quantum . 25
3.5.1 Get API Token . 25
3.5.2 Login With Python . 26
3.5.3 Running a quantum circuit 26
3.5.4 Revoking Access . 26

3.6 Amazon Web Services Braket . 27
3.6.1 Getting Access key . 27
3.6.2 Login with Python . 27
3.6.3 Running a quantum circuit 28

3.7 Aer . 28
3.7.1 Running a quantum circuit 28
3.7.2 Running a quantum circuit with noise 29

3.8 Example Quantum Programs . 29

4 UCloud 30
4.1 Setup . 31

5

Chapter 1

Introduction

Leading Quantum Computing as a Service (QCaaS) [1, 2] providers like Mi-
crosoft Azure Quantum1, Amazon Braket2, and IBM Quantum3 are paving the
way for advancements in the field of Cloud based quantum simulation and hard-
ware execution. To empower researchers and foster innovation, it’s crucial to
provide accessible resources for setting up development environments. These
resources should cater to both simulation-based testing and experimentation
on real quantum hardware, while assuming no prior knowledge of development
tools to ensure inclusivity for researchers across disciplines. This document is
a living resource, designed to remain up-to-date with the latest Qiskit versions
and backend setup processes. Further, it is the plan to expand the document to
include several examples and make these open source available via git4 and/or
EOSC5 (when available). In this guide, backends refer to the various simulators
and hardware platforms available.

1.1 Simulation
In the realm of quantum simulations, two primary types exist: ideal and noisy.
Ideal simulators operate under the assumption of a flawless, error-free quan-
tum system where all states are pure. These are invaluable for comprehending
the theoretical behavior of quantum algorithms within a perfect environment.
However, they fall short of accurately representing real-world quantum hard-
ware, which is inherently susceptible to errors.

Noisy simulations aim to replicate the real-world noise encountered in quan-
tum hardware by considering various sources like decoherence, gate errors, and
measurement errors. These simulations are particularly valuable for near-term
quantum devices, which inherently exhibit noise. However, the drawback of
noisy simulations lies in their increased computational demands compared to

1See: https://azure.microsoft.com/en-us/products/quantum/.
2See: https://aws.amazon.com/products/quantum/?nc2=h_ql_prod_qt.
3See: https://www.ibm.com/quantum/.
4See: https://github.com.
5See: https://eosc.eu.

6

https://azure.microsoft.com/en-us/products/quantum/
https://aws.amazon.com/products/quantum/?nc2=h_ql_prod_qt
https://www.ibm.com/quantum/
https://github.com
https://eosc.eu

ideal simulations, primarily due to the complexity involved in modeling noise
accurately.

The following Table 1.1 outlines the different quantum computing providers,
their qubit technologies, and their simulation/emulation capabilities:

Company Hardware Simu- Emu-
technology lator lator

IonQ6 Trapped Ion ✓
Pasqal7 Neutral Atom ✓
Quantinuum8 Trapped Ion ✓ ✓
Rigetti9 Transmon ✓
OQC10 (Oxford Quantum Circuit) Coaxmon ✓
|QuEra⟩11 Neutral Atom ✓
IBM Quantum Computing12 Transmon ✓

Table 1.1: Hardware methods and Simulation/Emulation capabilities.

1.2 Microsoft Azure Quantum
Microsoft Azure Quantum is a cloud based service that offers access to lectures,
documentation, simulators, and quantum computers. At the time of writing
(Friday 14th March, 2025) Microsoft Azure Quantum provides access to simu-
lators and quantum computers from:

• IonQ – https://ionq.com.

• Quantinuum – https://www.quantinuum.com.

• Rigetti – https://www.rigetti.com.

1.3 Amazon Web Services Braket
Amazon Web Services Braket is a fully managed quantum computing service
that provides access to a variety of quantum hardware technologies, simulators,
and tools for building, testing, and running quantum algorithms. At the time of
writing (Friday 14th March, 2025), Amazon Web Services Braket offers access
to simulators and quantum computers from:

• IonQ – https://ionq.com.

• IQM – https://www.meetiqm.com.

• |QuEra⟩ – https://www.quera.com.

• Rigetti – https://www.rigetti.com.

7

https://ionq.com
https://www.quantinuum.com
https://www.rigetti.com
https://ionq.com
https://www.meetiqm.com
https://www.quera.com
https://www.rigetti.com

1.4 IBM Quantum Computing
IBM13 is one of the top players in quantum computing in both development of
quantum computers and in software, stack, applications and in general terms
the entire ecosystem around quantum computing. IBM is focusing on a super-
conducting platform, which is characterized by a relatively high and scalable
state frequency. Researchers have generally assumed that state-of-the-art in
error-correction techniques demands more than 1,000 physical qubits for each
logical qubit [3].

However, in the fast moving quantum technology area improvements in mate-
rials, error-correction techniques/algorithms may change the expectations in a
short time [3]. IBM and others are working hard on solving or mitigating the
noise problem, and they have publicly announced a very ambitious road map for
handling the noise issue while at the same time upscaling the number of qubits.

1.5 Why Use This Guide?
This guide offers a unique combination of comprehensive setup instructions and
streamlined backend integration, catering to both beginners and experienced
quantum developers:

For Beginners:

• Comprehensive Tool Setup: Walk through a detailed setup process,
ensuring you have the necessary tools for basic quantum development.
This is especially helpful for non-developers who might not be familiar
with managing Python environments or other technical aspects.

• Learning Curve: Beginners may need to invest time in learning a suite
of new tools and concepts, which can be a steep learning curve. However,
this foundational knowledge will prove invaluable for future collaboration
on larger quantum projects.

For Experienced Developers:

• Minimalistic Package Approach: Focus on the essential packages
needed for implementing quantum algorithms, avoiding unnecessary de-
pendencies.

• Simplified Backend Setup: Get up and running with various backends
quickly, thanks to clear instructions and a unified approach.

• Enhanced Collaboration: Easily share your code and projects with
others, as the guide emphasizes using common base packages and Python
versions, minimizing compatibility issues.

• Cross-Platform Compatibility: Benefit from a suite of example pro-
grams tested on macOS, Linux, and Windows, ensuring smooth operation
on your preferred platform.

• Inspiration and Guidance: Explore a collection of tested example [4]
programs to spark your own quantum algorithm development.

13See: https://www.ibm.com/quantum.

8

https://www.ibm.com/quantum

By choosing this guide, you gain a valuable resource that simplifies the quantum
development process, regardless of your experience level. It empowers you to
focus on what truly matters: exploring the exciting world of quantum algorithms
and their potential applications.

9

Chapter 2

The Basic Tools

This guide is intended to aid a quantum simulation user to easy local install-
ment of common development tools and package managers. The guidelines are
intended for:

• Microsoft Windows (referred to as Win).

• Apple MacOS (referred to as MacOS).

• Ubuntu Linux (referred to as Linux).

Installation begins by first providing an overview of the installation process
for Win, MacOS, and Linux. Next, the installation process begins by using
package managers to install essential programs: Python for creating quantum
programs with Qiskit, Microsoft Visual Studio Code for editing, and Git
for version control and sharing. Next, we’ll explore the various backends avail-
able for running quantum programs on both simulators and real quantum hard-
ware. The following dependency graph in Figure 2.1 illustrates the relationships
between the relevant components.

10

Figure 2.1: Dependency graph for basic tools.

2.1 Homebrew (MacOS)

2.1.1 Installation
To install, go to homebrew and click on , which provides Figure 2.2.

Figure 2.2: Install interface for Homebrew.

11

https://brew.sh/

Then, (1) click the Launchpad icon in the Dock, (2) type Terminal in the search
field, (3) then click Terminal, and finally (4) then in the Terminal, choose Edit
> Paste and press enter. From here on, just follow the instructions in the
Terminal.

2.1.2 Usage
This subsection introduces you to the fundamentals of using Homebrew, which
is a powerful package manager for MacOS and Linux. The following covers its
basic usage and explain some of the terminology encountered by a user.

• Search: brew search <package_name>. Finds packages matching the
given name.

• Install:

– General: brew install <package_name>.

– MacOS (preferred): brew install –cask <package_name>. Installs
native macOS binaries for a smoother experience.

• Uninstall: brew uninstall <package_name>.

• Update: brew update. Gets the newest version of Homebrew and install
packages.

• List Installed Packages: brew list. Displays all packages currently
installed via Homebrew.

In line with its name, Homebrew uses brewing-related terms for different package
types:

• Keg: A keg is a binary program compiled from its source code on your
local machine.

• Bottle: A bottle is a pre-compiled binary downloaded file sfrom Home-
brew’s servers.

• Cellar: The cellar is the directory where Homebrew stores both kegs and
bottles (the binaries of the installed packages).

• Tap: A tap is a Git repository containing additional software formulas
(package definitions) that are not part of Homebrew’s main repository.

• Cask: Specifically for macOS, a cask is a formula that installs native
macOS applications (apps with graphical interfaces) instead of command-
line tools.

2.2 Snap (Linux)
Snap is a user-friendly package manager designed to simplify the process of
installing software applications on your Linux system.

12

2.2.1 Installation
To test your system for the installment and availability of the Snap package
manager, try running:

sudo snap install hello-world

If Snap is not installed, you’ll receive an error message. To install Snap on e.g.
Linux Ubuntu, execute the following commands in your terminal:

sudo apt update
sudo apt install snapd

For Linux distributions other than Ubuntu, detailed instructions on installing
Snap can be found here. Simply select your distribution from the list to access
the specific installation steps.

2.2.2 Usage
This subsection introduces you to the fundamentals of using Snap, a versatile
package manager for Linux distributions.

• List installed packages: snap list. Displays all the currently installed
snap packages on your system.

• Find packages: snap find "<packag_name>". Searches for packages
with names similar to the one you provided.

• Install a package: sudo snap install <package_name>. Downloads
and installs the specified package.

• Refresh a package: snap refresh <package_name>. Updates the pack-
age to the latest version if it’s already installed.

• Run a program: snap run <package_name>. Can be used to launch
an installed program if executing it directly does not work.

• Remove a package: sudo snap remove <package_name>. Uninstalls
the specified package from your system.

2.3 Microsoft Visual Studio Code

2.3.1 Installation
Windows

Go to Visual Studio Code and press the windows download button to get the
interface in Figure 2.3.

13

https://snapcraft.io/docs/installing-snapd
https://code.visualstudio.com/Download

Figure 2.3: Install interface for Visual Studio Code.

Then run the executable and follow the installation instructions.

MacOS

To install Visual Studio Code on MacOS, use brew to install it or use your
preferred package manager.

brew install –cask visual-studio-code

Linux

To install Visual Studio Code on Linux, use snap to install it or use your pre-
ferred package manager.

sudo snap install code –classic

2.3.2 Setup
This section guides you through setting up a basic Visual Studio Code Envi-
ronment tailored for Python development, complete with essential extensions to
streamline your workflow. To enhance your Python development experience in
Visual Studio Code, follow these steps:

• Access the Extensions Tab: Click on the Extensions icon (four squares)
located in the sidebar.

• Search and Install Python Extension: In the search bar, type "@id:ms-
python.python", and click the "Install" button to gain IntelliSense (code
completion) and debugging support.

• Install Jupyter Extension (Optional): If you work with Jupyter note-
books, search for "@id:ms-toolsai.jupyter", and click the "Install" button
to enable opening, and running Jupyter notebooks directly within Visual
Studio Code.

14

2.4 Python

2.4.1 Installation
Windows

Go to python 3.12, scroll to the files section as shown in Figure 2.4.

Figure 2.4: Display files to find python 3.12.

and download "Windows Installer (64bit)". Then run the executable and follow
the installation instructions.

MacOS

To install python on MacOS, use brew to install it or use your preferred package
manager:

brew install python@3.12

Linux

To install python on Linux, use snap to install it or use your preferred package
manager.

sudo snap install python3-alt
sudo snap alias python3-alt.3-12 python3

2.4.2 Virtual Environment
Virtual environments play a crucial role in software development by creating
self-contained spaces for each project. This isolation prevents conflicts that can
arise when different projects rely on varying versions of the same package. To
set up a virtual environment, use the appropriate command for your operating
system:

15

https://www.python.org/downloads/release/python-3120/

Windows:

py -m venv <environment_name>

Linux/MacOS:

python3 -m venv <environment_name>

Replace <environment_name> with your desired name for the virtual environ-
ment.

After setting up a virtual environment, you need to activate it before using it.
This ensures that your project uses the correct package versions and dependen-
cies within the isolated environment.

To activate your virtual environment, navigate to your project directory in
your preferred terminal. Then, execute the following command based on your
operating system:

Windows:

.\<environment_name>\ Scripts\activate

If you encounter an error like scripts cannot be loaded because running
scripts is disabled on this system you need to adjust your PowerShell
execution policy. This can be done by running the following command in an
elevated PowerShell window (run as administrator):

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

This command allows the execution of locally stored scripts and remote scripts
signed by trusted publishers.

Linux/MacOS:

source <environment_name>/bin/activate

Replace <environment_name> with the name you chose for your virtual envi-
ronment during creation. Once activated, you’ll notice the environment name
in parentheses at the beginning of your terminal prompt, indicating that you’re
working within the isolated environment.

Once you’ve finished working within your virtual environment, there are two
simple ways to exit:

• Close the Terminal: The most straightforward method is to simply
close the terminal window or tab where you activated the environment.
This will automatically deactivate the environment.

• Run the Deactivation Script: If you prefer to keep the terminal open,
you can deactivate the environment by running the following command for
your operating system:

Windows:

.\<environment_name>\Scripts\deactivate

16

Linux/MacOS:

source <environment_name>/bin/deactivate

2.4.3 Installing Packages in Your Virtual Environment
Once your virtual environment is activated, you can start installing the packages
your project needs. There are two primary approaches. Manual Installation as:

pip install <package_name>

Replace <package_name> with the name of the package you want to install. You
can specify a version by adding ==<version_number>. For example:

pip install numpy==1.23.5

For existing projects that come with a requirements.txt file, you can install
all the necessary packages in one go:

pip install -r requirements.txt

This file lists all the packages and their versions required by the project. Pip
will automatically download and install them for you. This is recommended for
reasons of easy, reliable, and secure use. Remember, always activate your virtual
environment before installing packages to ensure they are installed within the
isolated environment.

2.5 Git
Git is essential for version control, enabling collaboration, tracking changes, and
managing projects effectively. It provides features like branching, tagging, and
reverting to previous versions, making it indispensable for software development
and collaboration.

2.5.1 Installation
Windows

Go to git and download "64-bit Git for Windows Setup".

17

https://git-scm.com/download/win

Figure 2.5: Downloading git for Microsoft Windows.

MacOS

To install git on MacOS, use brew to install it or use your preferred package
manager:

brew install git

Linux

To install git on Linux, use snap to install it or use your preferred package
manager:

sudo snap install git-confined
snap alias git-confined git

2.5.2 Setting up SSH (Github)
After creating a Github account and installing Git, the easiest way to authen-
ticate with Github is through SSH. To begin, configure your Git settings with
your name and email:

git config –global user.name "Your name here"
git config –global user.email "your_email@example.com"

Next, locate your .ssh folder, typically found in your user’s home directory:

• For Windows, this path is usually C:\Users\<User>\.ssh\

• For Linux/macOS, it is ∼/.ssh/

Replace <User> with your actual username.

The next step is going to the .ssh directory in your terminal using the following
command:

cd <ssh_path>

18

https://Github.com/

The next step is to generate an SSH key pair using the following command
replacing your_email@example.com with the email you used to create your
Github account:

ssh-keygen -t rsa -C "your_email@example.com"

Follow the prompts to enter a filename for your key pair (e.g., id_git) and
optionally, a passphrase for added security.

Within the .ssh directory, create or edit a file named config (without file
extension). Add the following lines to this file:

Host Github.com
User git
Hostname Github.com
PreferredAuthentications publickey
IdentityFile <ssh_path><your_private_key_filename>

Then replace <your_private_key_filename> with the actual filename of your
private key (e.g., id_git). This configuration tells Git to use your SSH key
whenever you interact with Github.

When you generated your SSH key pair, a public key was also created alongside
the private key. This public key needs to be added to your Github account to
enable secure SSH authentication.

You should find the public key in the same .ssh directory as your private key,
with a similar name but with the .pub extension(e.g., id_git.pub):

• Login to your Github account.

• Navigate to SSH Settings.

• Click on the New SSH key button.

• Provide a title for the key.

• Open the public key file (e.g., id_git.pub) in a text editor and copy the
entire contents.

• Paste the copied public key into the Key field on Github.

• Click Add SSH key to save it.

Now, Github will be able to authenticate you using the SSH key pair you gen-
erated.

To test your SSH setup and ensure it’s working correctly with Github, run the
following command in your terminal:

ssh -T git@github.com

If successful, you should see a message similar to this:

Hi username! You’ve successfully authenticated, but Github
does not provide shell access.

19

https://Github.com/settings/ssh

Where username is your actual Github username. This message confirms that
your SSH key is recognized by Github, and you’re now able to securely interact
with your repositories using SSH.

If you have any issues Github has more extensive documentation on potential
errors during setup: documentation.

2.5.3 Usage
This section provides a brief overview of essential Git commands for beginners:

• git clone <repository_url>: Creates a local copy of a remote reposi-
tory. Replace <repository_url> with the actual URL of the repository.

• git checkout <branch_name>: Switches to a different branch, allowing
multiple developers to work on the same code base without interfering
with each other.

• git branch or git branch <branch_name>: Lists all branches in your
repository or creates a new branch with the specified name.

• git add <file> or git add .: Adds changes in a specific file or all
changes in the current directory to staging, preparing them for the next
commit.

• git commit -m "<message>": Records the changes to the repository in
staging along with a message summarizing the changes.

• git push: Uploads your local commits to the remote repository, mak-
ing your changes accessible to others. Make sure not to push anything
confidential or information of sensitive kind.

• git pull: Downloads any changes from the remote repository and merges
them into your local branch, keeping the code up to date.

• git merge: Combines changes from a specified branch into your current
branch.

These are just a few of the Git commands available. For more information look
at the reference manual.

20

https://docs.Github.com/en/authentication/connecting-to-Github-with-ssh
https://git-scm.com/docs

2.6 Jupyter (Optional)
Jupyter is a powerful tool for developing quantum algorithms due to its inter-
active nature. With Jupyter notebooks, developers can write code interspersed
with explanatory text, equations, and visualizations. This makes it easy to
experiment with different quantum algorithms, visualize quantum states, and
analyze results in real-time. To install the Jupyter Python package, make sure
your virtual environment is activated and then run the following command in
your terminal:

pip install jupyter ipykernel

After installing the Python package, Jupyter extension for VSCode must also
be installed.1

1See: 2.3.2 to install the extension.

21

Chapter 3

Setting up backends

This chapter is about getting a basic setup, creating a virtual Python envi-
ronment for your project, and installing basic packages that are useful for all
backends. Finally, setting up your desired backend and running a simple test
quantum program.

3.1 Virtual Environment
Go to your desired folder for your quantum project and open a terminal or
command prompt and use the following commands to create and activate an
environment.

Windows
py -m venv .venv
.venv\Scripts\activate

If you encounter an error like scripts cannot be loaded because running
scripts is disabled on this system you need to adjust your PowerShell
execution policy. This can be done by running the following command in an
elevated PowerShell window (run as administrator):

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

This command allows the execution of locally stored scripts and remote scripts
signed by trusted publishers.

Linux/MacOS

python3 -m venv .venv
source .venv/bin/activate

To enter the project’s virtual environment, you’ll need to run the second com-
mand. It’s crucial to ensure you’re in the virtual environment, especially when
installing packages. This helps prevent conflicts with system-wide packages.

22

Make sure to check if you’re in the virtual environment by verifying if (.venv)
is appended to the current path in the terminal before installing any packages.
If you are still unsure, then you can run the second command to enter it.

3.1.1 Portable environments
To enhance project portability and ensure consistent environments for collabo-
rators, consider freezing package versions. This can be achieved by generating
a requirements.txt file listing exact package dependencies and their versions.

pip freeze > requirements.txt

3.1.2 Updating Portable environments
To update packages in your environment, install the pur package using pip and
run it on your requirements.txt file. If you do not have a requirements.txt
file, follow the steps in Section 3.1.1 to generate one. This will update the
file to list the latest versions of the packages currently installed in your pip
environment.

pip install pur
pur -r requirements.txt
pip install --force-reinstall -r requirements.txt

After updating packages, there may be differences in package usage. It is rec-
ommended to check the Quantum Setup repository for updated examples or
consult the documentation of individual packages.

3.2 Basic Packages
To create a basic setup with a couple of helpful packages for quantum computing,
install the following packages for your operating system.

pip install qiskit matplotlib pylatexenc numpy
pip install python-dotenv

3.3 Environment File
First step is creating an environment file with the name .env in your project
folder. This file should never be shared, as anyone who has access will be able
to spend credits. If you are using git, this can be avoided by adding it to the
.gitignore file, by adding the line .env. The environment file operates as a
key-value store, utilizing the format key = value, with each key on a separate
line. In subsequent guides for various backends, we will employ the .env file to
store login information.

23

https://github.com/LowkeyCoding/QuantumSetup

3.4 Microsoft Azure Quantum
To create a basic Microsoft Azure Quantum setup, then install the following
packages for your operating system.

Windows

py -m pip install azure-quantum azure-quantum[qiskit]

Linux/MacOS

pip install azure-quantum "azure-quantum[qiskit]"

Linux/MacOS users may need to install PyQt5 if they dont use Jupyter to show
plots.

pip install PyQt5

3.4.1 Get the Connection string
To find the Connection String go to azure portal and locate
Quantum workspace under services. From there you should be able to click
Operations and then Access Keys. Finally copy the Connection String.

Figure 3.1: Azure Connection String from quantum workspace.

3.4.2 Login in from python
To login using python add the line "ID=Your Resource ID Here" and "Location
= Your Location Here" to the environment file .env:

24

https://portal.azure.com

1 import os
2 from azure.quantum import Workspace
3 from azure.quantum.qiskit import AzureQuantumProvider
4 from dotenv import load_dotenv
5
6 # Load environment variables
7 load_dotenv(dotenv_path="path to environmnet file")
8 # If environment file is in the same folder as the script then use it without parameters "load_dotenv ()"
9

10 workspace = Workspace.from_connection_string(os.environ[’azure_connection ’])
11 provider = AzureQuantumProvider(workspace)

To list the currently available backends add the snippet below to the login
example:

1 print("This workspace ’s targets:")
2 for backend in provider.backends ():
3 print("- " + backend.name())

3.4.3 Running a quantum circuit
To run a quantum circuit, a specific backend has to be chosen from the list
of currently available ones. This is done by changing the backend on the line
shown below in the sample script.

1 backend = provider.get_backend("ionq.simulator")

3.5 IBM Quantum
To install the required packages for IBM Quantum run the following command:

pip install qiskit-ibm-runtime

3.5.1 Get API Token
Go to the IBM Quantum Dashboard. If you don’t have an account, sign up
for one. Otherwise, log in. Once logged in, navigate to your dashboard. You’ll
find your API key there. Copy your API key. This is used to authenticate your
access to IBM Quantum services.

Figure 3.2: API token from the IBM quantum platform.

25

https://github.com/LowkeyCoding/QuantumSetup/blob/azure_backend/sample.py
https://quantum-computing.ibm.com/

3.5.2 Login With Python
To login using python add the line ibm_token=Your API Token Here to the
.env file:

1 from qiskit import QuantumCircuit , transpile
2 from qiskit.visualization import plot_histogram
3 from qiskit_ibm_runtime import QiskitRuntimeService
4 from dotenv import load_dotenv
5
6
7 # Load environment variables
8 load_dotenv(dotenv_path="path to environmnet file")
9 # If environment file is in the same folder as the script then use it without parameters "load_dotenv ()"

10
11 provider = QiskitRuntimeService(token=os.environ[’ibm_token ’])

To list the currently available backends add the snippet below to the login
example.

1 print("This workspace ’s targets:")
2 for backend in provider.backends ():
3 print("- " + backend.name())

3.5.3 Running a quantum circuit
To run a quantum circuit, a specific backend has to be chosen from the list
of currently available ones. This is done by changing the backend on the line
shown below in the sample script.

1 backend = provider.get_backend("ibm_ brisbane")

3.5.4 Revoking Access
Go to the IBM Quantum Dashboard. Then click the refresh icon by the API
Key marked by (1) then click Regenerate token marked by (2):

Figure 3.3: Regenerate IBM quantum API token.

26

https://github.com/LowkeyCoding/QuantumSetup/blob/ibm_backend/sample.py
https://quantum-computing.ibm.com/

After revocation, any unauthorized user is no longer able to utilize the old API
key.

3.6 Amazon Web Services Braket
To install the required packages for Amazon Braket run the following command:

pip install qiskit-braket-provider boto3 amazon-braket-sdk

3.6.1 Getting Access key
First, click on your username (1), then click on Security credentials (2) as shown
in Figure 3.4.

Figure 3.4: Setup AWS braket access key.

Next, click on Create access key (3) in Figure 3.5, and follow the instructions.
You’ll need both the access key and the Secret access key for the next step.

Figure 3.5: Create AWS braket access key.

3.6.2 Login with Python
Setup the environment file .env by adding the lines:

27

1 aws_access = Your Access key
2 aws_secret = Your Secret access key
3 aws_region = Your Region

Then the minial login script below should provide an AWS session used to access
Amazon Web Services Braket backends.

1 from braket.aws.aws_session import AwsSession
2 import boto3
3 import os
4 from dotenv import load_dotenv
5
6 # Load environment variables
7 load_dotenv ()
8
9 boto_session = boto3.Session(

10 aws_access_key_id=os.environ[’aws_access ’],
11 aws_secret_access_key=os.environ[’aws_secret ’],
12 region_name=os.environ[’aws_region ’],
13)
14 session = AwsSession(boto_session)

To list the currently available backends, include the following snippet in the
login example:

1 print("This workspace ’s targets:")
2 for backend in provider.backends(aws_session = session):
3 print("- " + backend.name)

3.6.3 Running a quantum circuit
To run a quantum circuit, a specific backend has to be chosen from the list
of currently available ones. This is done by changing the backend on the line
shown below in the sample script.

1 backend = provider.get_backend("SV1", aws_session = session)

3.7 Aer
To install the required packages for the Aer simulator run the following com-
mand:

pip install qiskit-aer

3.7.1 Running a quantum circuit
Here, you’ll find a simple Bell-state quantum circuit, ideal for testing your in-
stallation:

1 from qiskit import *
2 import numpy as np
3 from qiskit_aer import AerSimulator
4 from qiskit.visualization import plot_histogram
5 from matplotlib import pyplot
6
7 circ = QuantumCircuit (3)
8
9 circ.h(0)

10 circ.cx(0, 1)
11 circ.cx(0, 2)
12
13 circ.measure_all ()
14 circ.draw(’mpl’)
15
16 # Setting a backend
17 backend = AerSimulator ()
18

28

https://github.com/LowkeyCoding/QuantumSetup/blob/braket_backend/sample.py

19 # Transpile circuit to work with the current backend.
20 qc_compiled = transpile(circ , backend)
21 # Run the job
22 # This will cause a pop where you have to authenticate with azure.
23 job_sim = backend.run(qc_compiled , shots =1024)
24
25 # Get the result
26 result_sim = job_sim.result ()
27 counts = result_sim.get_counts(qc_compiled)
28
29 # Plot the result
30 plot_histogram(counts)
31 pyplot.show()

3.7.2 Running a quantum circuit with noise
Follow the steps outlined to set up the IBM backend (refer to Section 3.5), and
then configure Aer using the noise model specific to the chosen IBM backend:

1 from qiskit_aer import AerSimulator
2 from qiskit import QuantumCircuit , transpile
3 from qiskit.visualization import plot_histogram
4 from qiskit_ibm_runtime import QiskitRuntimeService
5 from matplotlib import pyplot
6
7 provider = QiskitRuntimeService ()
8
9 # Selecting a backend hardware from ibm.,

10 real_backend = provider.backend("ibm_brisbane")
11 # Instantiate Aer simulator with hardware backend.
12 backend = AerSimulator.from_backend(real_backend)

3.8 Example Quantum Programs
The QuantumSetup [4] repository features branches for each backend, each con-
taining example programs to test your setup and familiarize yourself with Qiskit.
As of (Friday 14th March, 2025), the available example programs include:

• Grover’s Algorithm.

• BB84 Quantum Key Distribution.

• Bernstein-Vazirani Algorithm.

• Quantum Approximate Optimization Algorithm for Max Cut.

• Quantum Random Number Generator.

• Shor’s Algorithm.

To access example programs, navigate to the appropriate backend folder within
the QuantumSetup repository and then locate the examples subdirectory. Al-
ternatively, consult the README.md file for specific instructions related to your
chosen backend.

29

https://github.com/LowkeyCoding/QuantumSetup

Chapter 4

UCloud

UCloud (in full name ‘DeiC Interactive HPC Type 1’ but in this text referred to
as UCloud) is a shared cloud supercomputer accessible to researchers at the Uni-
versity of Southern Denmark, Aalborg University, and Aarhus University. For
this course, it offers a convenient alternative to a local setup. With UCloud, you
can access a pre-configured virtual environment with all necessary dependencies
directly from the cloud, eliminating the need for local setup. This is particularly
beneficial if you encounter issues with your local setup or are using a computer
where software installation is restricted.

30

4.1 Setup
To join the class/project, click the invite link, which should look something like
cloud.sdu.dk/app/projects/invite/invite_code. This link will take you to
a login page where you can log in using your university Microsoft account.

Next, make sure that you are working in the correct UCloud project. To do
this, click on the workspace selector (shown in 4.1) and choose the workspace
for the class/project.

Figure 4.1: Ucloud select workspace

Next, set up your personal drive. Each user will have an automatically created
drive that only you and the UCloud project administrators can access. To create
a folder for your project files, hover over the folder icon highlighted in 4.2 and
click on Member Files:<your_name_here>

31

Figure 4.2: Ucloud select drive

Then, click the Create folder button highlighted in 4.3 and give the folder a
name.

Figure 4.3: Ucloud create folder

Next, go to the UCloud Coder app by clicking here. Next, click on the star
highlighted in 4.4 (marked in red) to add the Coder app to your quick access
menu accessible, by hovering over the shopping bag icon. Finally, select the
Machine type dropdown highlighted in 4.4 (marked in green).

32

https://cloud.sdu.dk/app/jobs/create?app=coder-python

Figure 4.4: Ucloud coder app

Next, click on Add folder highlighted in 4.5 (marked in red), and then select
No directory selected (marked in green).

Figure 4.5: Ucloud add folder part 1

Choose the folder you created earlier. This folder is used to store all files that
need to be saved between jobs. In 4.6, I selected the folder I created called test.

33

Figure 4.6: Ucloud add folder part 2

Next, choose the estimated number of hours you will be working on the project.
Do not worry you can always increase this later if needed. Then, click the green
Submit button in 4.7 to start the job.

Figure 4.7: Ucloud submit job

Then, click the Open terminal button in 4.8 (marked in green) to open the
terminal.

34

Figure 4.8: Open terminal

Next, run the following commands in the terminal. For the second command,
replace <folder> with the name of the folder you created earlier. When running
the last command, you will be prompted to select a project name and choose
examples to download from the available backends. The expected output (ex-
cluding the last command) is shown in 4.9.

curl -LsSf https://raw.githubusercontent.com/LowkeyCoding/QuantumSetup/refs/heads/master/setup.sh | sh
cd <folder>
qproject --notebook --ucloud

Figure 4.9: Terminal output 1

Then, follow the instructions generated by the qproject script; these should be
similar to those in 4.10.

35

Figure 4.10: Terminal output 2

Next, run the following commands to create a Jupyter kernel.

uv add --dev ipykernel
uv run ipython kernel install --user --env VIRTUAL_ENV $(pwd)/.venv --name=project

Once the job is complete, click the Open interface button highlighted in 4.11
(marked in yellow) to launch Visual Studio Code in your browser. To extend
your workspace’s allocated time, use the buttons highlighted in 4.11 (marked in
red), which allow you to add 1, 8, or 24 hours, respectively

Figure 4.11: Ucloud open/extend job

After opening the interface, open your quantum project folder as shown in 4.12,

36

then open any example file. Once the example is open, click Select Kernel in
4.12 (marked in green).4.12.

Figure 4.12: Ucloud open example

When the kernel selection popup appears, click Jupyter Kernel and select the
project kernel, as shown in 4.12.

Figure 4.13: Ucloud select jupyter kernel

Now you should have a working setup for the current UCloud session. When
creating a new session, open the terminal, navigate to the folder containing your
quantum project, and run the following commands:

curl -LsSf https://raw.githubusercontent.com/LowkeyCoding/QuantumSetup/refs/heads/master/setup.sh | sh
uv run ipython kernel install --user --env VIRTUAL_ENV $(pwd)/.venv --name=project

This will provide you with all the dependencies needed to create Qiskit quantum
programs, including access to the backends mentioned in the local installation
guide. If you’d like to explore some sample programs to test the environment,
check out the QuantumSetup repository here.

37

https://github.com/LowkeyCoding/QuantumSetup

Bibliography

[1] Aakash Ahmad, Ahmed B. Altamimi, and Jamal Aqib. A Reference Ar-
chitecture for Quantum Computing as a Service. 2023. arXiv: 2306.04578
[quant-ph]. url: https://arxiv.org/abs/2306.04578.

[2] Aakash Ahmad et al. Engineering Software Systems for Quantum Com-
puting as a Service: A Mapping Study. 2023. arXiv: 2303.14713 [cs.SE].
url: https://arxiv.org/abs/2303.14713.

[3] Davide Castelvecchi. “IBM releases first-ever 1,000-qubit quantum chip”.
eng. In: Nature (London) 624.7991 (2023), pp. 238–238. issn: 1476-4687.

[4] Loke Walsted and Torben Larsen. QuantumSetup. https://github.com/
LowkeyCoding/QuantumSetup. 2024.

38

https://arxiv.org/abs/2306.04578
https://arxiv.org/abs/2306.04578
https://arxiv.org/abs/2306.04578
https://arxiv.org/abs/2303.14713
https://arxiv.org/abs/2303.14713
https://github.com/LowkeyCoding/QuantumSetup
https://github.com/LowkeyCoding/QuantumSetup

	Introduction
	Simulation
	Microsoft Azure Quantum
	Amazon Web Services Braket
	IBM Quantum Computing
	Why Use This Guide?

	The Basic Tools
	Homebrew (MacOS)
	Installation
	Usage

	Snap (Linux)
	Installation
	Usage

	Microsoft Visual Studio Code
	Installation
	Setup

	Python
	Installation
	Virtual Environment
	Installing Packages in Your Virtual Environment

	Git
	Installation
	Setting up SSH (Github)
	Usage

	Jupyter (Optional)

	Setting up backends
	Virtual Environment
	Portable environments
	Updating Portable environments

	Basic Packages
	Environment File
	Microsoft Azure Quantum
	Get the Connection string
	Login in from python
	Running a quantum circuit

	IBM Quantum
	Get API Token
	Login With Python
	Running a quantum circuit
	Revoking Access

	Amazon Web Services Braket
	Getting Access key
	Login with Python
	Running a quantum circuit

	Aer
	Running a quantum circuit
	Running a quantum circuit with noise

	Example Quantum Programs

	UCloud
	Setup

