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Where does machine learning excel?

• Learning complex direct mappings:  

• Learning complex inverse mappings:  

• Learning decision rules for complex mappings:  

Use neural networks to learn         and 
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Problems that could benefit from ML

• Communication over the nonlinear fiber-optic channel:
– Channel highly complex

– Capacity unknown?

– Optimum receiver architecture unknown

– Optimum modulation and pulse-shapes unknown

• Optical amplifiers for multiband-wavelength and SDM systems:

– Complex relation between pumps and gain

– Optimization of pump powers and wavelengths for target gain profiles

– Optimization of pump powers and wavelengths for target mode dependent

• Design of optical components (inverse system design):

– Given laser bandwidth and noise find the physical parameters

– Given modulator BW find the physical parameters

– Instead of running time-consuming simulation build fast ML based models

• Noise characterization of lasers and frequency combs:

– Amplitude and phase tracking at the quantum limit 

– Extraction of noise correlation matrices, e.e amplitude, phase, amplitude-phase

– Macroscopic comb parameters, i.e. timing jitter, amplitude jitter, carrier envelope offset
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Research topics and collaborations

Machine learning enabled ultra-wideband amplifier design

Unifying framework for lasers and frequency combs noise characterization

Machine learning techniques for communicate over complex channels

Highly-sensitive fiber based sensing systems  

Quantum phase tracking and communication

Optical technologies to accelerate AI
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[1] D. Zibar et al., ”Inverse system design using machine learning: the 
Raman amplifier case,”  Journal of Lightwave technology, 2019

1

1 Physical 
system

X Y T

e
Use e to adjust X

#1 Problem statement: #2 Train neural network to learn inverse mapping (from X to Y):

XY

#3 Train neural network to learn forward mapping (from X to Y):

YX

#4 Perform final optimization:

T-
T

X T 

A physical system describing 
relation between input X and 
output Y is given. The objective 
is to determine input X that 
would result in a targeted 
output T.

T X

e

Use e to adjust X 

Inverse system learning

[2] U. C. de Moura et al., ”Multi-band programmable Raman amplifier,”  
Journal of Lightwave technology, 2020
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[1] R. Jones, et al., ECOC 2018

[2] R. Jones, et al., ECOC 2019

[3] S. Gaiarin et al., JLT, 2020

[4] O. Jovanovic et al., et al, JLT 2021

Learning to communicate over complex channels
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[1] D. Zibar et al., PTL 2019

[2] G. Brajatto et al, Optics Express, 2020
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State-of-the-art New topics anno 2020-2021:

• Photonic reservoir computing1

• Optical amplifier and laser design2-3

• End-to-end learning4

• Back-propagation learning5

• Optical network optimization6-7

• Frequency comb noise characetrization8

• Photonic component design

D. Zibar et al., Nature Photonics, (11) 749-751, 2017

[1] S. Ranzini, “Tuneable optoelectronic…” JSTQE 2020

[2] D. Zibar, “Inverse system design…,” JLT 2019

[3] Z. Ma, “Paremeter extraction and inverse,” Optics Express 2020

[3] Karanov, “End-to-end deep learning…”, JLT 2018

[4] C. Hager, “Revisiting multi-step…,” ECOC 19

[5] F. Musemechi, “An overview on…,” IEEE Comm. survey, 2019 

[6] F. N. Khan, “An optical communication persp…,” JLT 2019

[7] G. Brajato, “Bayesian filtering…,” Optics Express, 2020

[8] U. C. de Moura, “Multi-band optical program. Amplifier,” JLT 2020

[9] K. Kojima, "Inverse Design of Nanophotonic Devices…", OFC 2020

[10] G. Genty, “Machine learning in ultrafast photonics,” Nat. Phot., 2020

Will machine learning be a game changer? 
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Research Highlights (2019-2021)

• Record -sensitive and -accurate optical phase measurement1,2 (quantum limited operation)

– Identification of fundamental laser linewidth

– Identification of frequency comb noise sources

– Optimum phase measurement in the presence of amplifier noise

• Machine learning enabled ultra-wideband Raman amplifiers3,4,5,6

– Arbitrary gain profiles in S-C-L band 

– Gain and power profile shaping in distance and frequency

– Noise figure prediction of Raman amplifiers

• Learning optimum transmitter and receivers architectures7,8,9

– Channel tailored constellation

– SNR and linewidth robust constellation

– Equalization of IM/DD using reservoir computing

1. D. Zibar et al., Optica, 2021

2. G. Brajato et al. Opt. Express, 2020

3. D. Zibar, J. Ligtwave Technol., 2020  (top cited JLT 
paper in 2020)

4. M. Soltani, Optics Letters, 2021

5. U. de Moura, J. Lightwave Technol., 2020

6. U. de Moura, Optics Letters, 2021

7. R. Jones et al, ECOC 2019

8. O. Jovanovic et al., sub to JLT, 2021

9. F. Da Ros, IEEE J. Select. Topics Quant. El. 2020
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Challenges to be addressed

• Fields focuses on the experimental demonstrations 

• ML benefits on experimental data should be ideally shown

• Noise in experimental set-ups (non Gaussian, non additive)

• Experimental-set ups are prone drifts and fluctuations

• Automatizing experimental-set ups for training data acquisition (noise, drift,)

• Training of NNs using gradients computation - challenging in experimental environments

• Deep understanding of statistics, linear algebra, optimization and experimental set-up debugging 

necessary not to end in pitfalls
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Application of multi-layer neural networks for design of Raman amplifiers

[1] D. Zibar, A. M. Rosa Brusin, U. C. de Moura, F. Da Ros, V. Curri, Andrea Carena, “Inverse system design using machine 
learning: The Raman amplifier case,” Journal of Lightwave Technology, vol. 38, no. 4, 2020 

[2] M. Soltani, F. Da Ros, A. Carena, D. Zibar, “Inverse design of a Raman amplifier in frequency and distance domains using 
convolutional neural networks,” Optics Letters, vol. 46, no. 11, 2021

[3] A. M. Rosa Brusin, V. Curri, D. Zibar, and A. Carena, “An ultrafast method for gain and noise prediction of Raman 
amplifiers,” in proceedings of European Conference on Optical Communication, ECOC, 2019

[4] U. C. de Moura, F. Da Ros, A. M. Rosa Brusin, A. Carena, and D. Zibar, “Experimental demonstration of arbitrary Raman 
gain–profile designs using machine learning, ” in Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest 
(Optical Society of America), 2020

[5] U. C. de Moura, Md A. Iqbal, M. Kamalian, L. Krzczanowicz, F. Da Ros, A. M. Rosa Brusin, A. Carena, W. Forysiak, S. 
Turitsyn and D. Zibar, “Multi–band programmable gain Raman amplifier,” Journal of Lightwave Technology, 2020
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Increasing the bandwidth of optical systems 

(a) Future data projection (b) Channel capacity

:capacity

:signal-to-noise ratio

:bandwidth

:spatial paths

Significantly higher gains by increasing spatial paths than SNR

[b/s/Hz]
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1260 1360 1460 1530 1565 1625

Wavelength [nm]

Ultra-wideband optical amplification

Raman amplifiers [5, 6]

SOA: semiconductor optical amplifier

xDFA: doped fiber amplifier

OPA: optical parametric amplifier

O-band E-band S-band C-band L-band

SOA [3]

EDFA + TDFA [1]

BiDFA [2]

OPA [4]

EDFA

EDFA

[1] T. Sakamoto, JLT, vol. 24, no. 6, 2006 

[2] Y. Wang, OFC 2020, Th4B.1

[4] T. Kobayashi, OFC 2020, Th4C.7

[3] J. Renaudier, ECOC, 2018

[5] J. Chen, IEEE Photonics Journal, vol. 10, 2018

[6] M. A. Iqbal, OFC 2020, W3E.4
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Arbitrary gain Raman amplifiers 

Raman 
solver

Parameter 
optimization

Repeat N times

- High complexity due to Raman solver

- Restart optimization for new gain profile

- Long convergence time

- Rely on evolutional algorithms 

Target

New target

Design (sum)

S-bandL-band C-band
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Approximating Raman amplifier with NN

Neural network learns forward mapping,        , using training data

and perform predictions for new input data: 
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Learning inverse mapping

Learning the inverse mapping allows for designing arbitrary gain profile
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Building the model from the data
Given N pumps generate M gain profiles

M gain profiles each with K points

λ1 ~ U[λ1,min; λ1,max] nm
λ2 ~ U[λ2,min; λ2,max] nm
…
λN ~ U[λn,min; λn,max] nm

P1 ~ U[P1,min; P1,max] W
P2 ~ U[P2,min; P2,max] W
…
PN ~ U[Pn,min; Pn,max] W

Data-set

Numerically

Experimentally

𝒟 = 𝜆1
𝑖 , 𝜆2

𝑖 , … , 𝜆𝑁
𝑖 , 𝑃1

𝑖 , 𝑃2
𝑖 , … , 𝑃𝑁

𝑖 , 𝐺1
𝑖 , 𝐺2

𝑖 , … , 𝐺𝐾
𝑖 |𝑖 = 1,… ,𝑀

Training

Validation

Raman amplifier

P1 P2
… Pn

…
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The machine learning framework

Fine-optimization 

routine

f

P1P2

P3
Pn

Pump powers

f

Target gain

𝐺1
𝐺2 𝐺𝑁

f

Predicted gain

𝐺1
𝐺2 𝐺𝑁

f

MSE

𝑓−1(𝐘) = 𝐗

Inverse mapping Direct mapping

𝑓 X = 𝐘

GD

GD: gradient descent

MSE: mean squared error

D. Zibar, J. Lightwave Technol. 38(4), 736–753 (2019)

U. de Moura, J. Lightwave Technol. 39(4),1162–1170 (2021)
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Experimental validation of the learned model 

Numerical/Experiment

Target 

gains Machine learning 
framework 

Raman inverse design

mse

GD

Pump 

powers

Raman amplifier

P1 P2
… Pn

…

Flat gains

Arbitrary gains*

Tilted gains

* Part from the acquired data not used on training

Measured 

gains
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Flat gain profile design (C band)
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Arbitrary gain profile design (C band)
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𝑷𝒑𝒖𝒎𝒑 = [𝑃1, … , 𝑃𝑁]

𝝀𝒑𝒖𝒎𝒑 = [𝜆1, … , 𝜆𝑁]

Signal power profile

Arbitrary distance and gain profile

21

?

Desired power profile  (e.g. Flat input) 
Pump setup

𝑷𝒑𝒖𝒎𝒑 = [𝑃1, … , 𝑃𝑁]

𝝀𝒑𝒖𝒎𝒑 = [𝜆1, … , 𝜆𝑁]

Learn the inverse model

Raman amplifier
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Power profile and gain shaping 

Quasi-lossless transmission with uniform distribution of power resulting in:

• Minimizing the amplified spontaneous emission (ASE) noise level

• Requirement for Nonlinear Fourier Transform (NFT)  - NFT assumes lossless transmission

Symmetric power distribution: 

• A requirement for nonlinearity mitigation using optical phase conjugation (OPC)

22
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Bi-directional Raman amplifier

Raman 
solver

Parameter 
optimization

Repeat N times

- Restart optimization for new gain profile

- Long convergence time

- Usually based on evolutional algorithms 

Inverse model 

No closed-form solution! 
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Network architecture? 

Using State-of-the-art networks : 

• Requires vectorising the input without removing the spatial relevancy

• Number of training parameters goes extremely high

• High training time

• Overfitting

Using Convolutional Neural Networks (CNNs) 

• 2D power profile is resembled as an image 

• Extracts the spatial information and decrease the 
redundancy 

• Higher training speed and Extremely lower number of 
parameters 

24
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Proposed network for inverse design 

M. Soltani, Opt. Lett.  46, 2650-2653 (2021). 
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Simulation results - 1st order pumping test results 
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Simulation results – 2nd order pumping test results

Pumps Power range Wavelengths (fixed)

2nd order co-pump 0.2 – 1.2 W 1366 nm

2nd order counter-pump 0.2 – 1.2 W 1366 nm

3 1st co-pumps 5 – 150 mW [1425, 1455, 1475]

3 1st counter-pumps 5 – 150 mW [1425, 1455, 1475]

Pump parameters for 8 pumps case 

𝝁 = 𝟎. 𝟔𝟐 𝒅𝑩 , 𝝈 = 𝟎. 𝟑𝟑 𝒅𝑩
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Conclusion and outlook

• Multi-layer and convolutional neural networks can learn Raman amplifier direct and inverse mappings  

• Learned mappings useful for optimization of pump powers and wavelengths for:

– Generation of arbitrary gain profiles

– Generation of arbitrary power and gain profiles

• Maximization of information rate for ultra-wideband optical networks requires power and gain optimization

• The framework brings significant advantages for complex experimental optimization procedures

• Machine-learning enabled inverse system design relevant for a variety of problems in photonics

28
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Unifying framework for noise characterization of lasers and 

frequency combs

[1] D. Zibar et al., “Ultra-sensitive phase and frequency noise measurement technique using Bayesian filtering,” Photonics 
Technology Letters, 2019 (invited paper)

[2] D. Zibar et al., “Towards intelligence in photonic systems,” Optics & Photonics News, 2020

[3] G. Brajato et al., “Bayesian filtering framework for noise characterization of frequency combs,” Optics Express 2020

[4] H. M. Chin et al. “Machine learning aided carrier recovery in quantum key distribution,” npj Qunatum Inf. 2020

[5] N. Von Bandel et al., “Time-dependent laser linewidth: beat-note digital acquisition,” Optics Express, 2016

[6] X. Xie et al., “Phase noise characterization of sub-hertz linewidth lasers via digital cross correlation,” Opt. Lett. 2017

[7] D. Zibar et al., ”Optimum phase measurement in the presence of amplifier noise,” under review in Optica
(https://arxiv.org/abs/2106.03577)

29
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Optical frequency combs

• Comb applications performance heavily relies on the macroscopic comb noise properties:

Relative intensity noise Timing jitter
Line phase noise

𝐸(𝑡)

𝐸(𝜈)

𝑇𝑅

Δ𝜈 = 1/𝑇𝑅

ℱ−1 ℱ

𝜈

𝑡

𝐸(𝑡)

𝑡

𝛿𝐴(𝑡)ҧ𝐴
𝐸(𝑡)

𝑡

𝑇𝑅 + 𝛿𝑇(𝑡)
𝐸(𝜈)

𝜈

𝛿𝜈1

𝛿𝜈2

𝛿𝜈𝑀

⋯
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Noise definitions

𝑠 𝑡 = 𝐴0cos(2𝜋𝜈0𝑡)

𝜔2𝜋𝜈0

𝑆(𝜔)

Ideal oscillator Real oscillator

𝑠 𝑡 = 𝐴0 1 + 𝑎 𝑡 cos 2𝜋𝜈0𝑡 + 𝜙 𝑡 + 𝑟(𝑡)

Relative intensity noise Phase noiseMean frequencyMean amplitude

𝜔2𝜋𝜈0

𝑆(𝜔) 𝐴0

Measurement noise

෨𝜙 𝑡 = 2𝜋𝜈0𝑡 + 𝜙 𝑡 𝜈 𝑡 =
1

2𝜋

𝑑 ෨𝜙 𝑡

𝑑𝑡
= 𝜈0 +

1

2𝜋

𝑑𝜙 𝑡

𝑑𝑡
= 𝜈0 + 𝛿𝜈(𝑡)Sum of a linear growing trend and a 

stochastic term

Sum of a constant 
term and a 

stochastic term

Frequency noiseTotal phase Instantaneous 
frequency
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Intensity noise Phase noise Measurement noise

ti
m
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fr

e
q
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Noise in time and frequency domain

𝛿𝐴 𝑡 = 𝑎 𝑡 A0

𝑠(𝑡)

𝐴0

𝑡

𝑠(𝑡)

𝐴0

𝑡

𝑠(𝑡)

𝐴0

𝑡

𝜙 𝑡 𝑟 𝑡

𝑆(𝜔)

𝐴0

𝜔

𝑆(𝜔)

𝐴0

𝜔

𝑆(𝜔)

𝐴0

𝜔2𝜋𝜈0 2𝜋𝜈0

𝐴0/2 FWHM

2𝜋𝜈0

RIN

NF
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The importance of measuring the optical phase

• Optical communication systems (DSP free data-center links)

• Noise characterization of lasers and frequency combs

• Quantum key distribution

• Classical and quantum sensing 

• Gravitation wave interferometry 

Lower bound on laser phase noise dictated by quantum noise – how do we measure it?
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Limitation of the state-of-the-art

• Conventional methods based on delay-interferometer or cross-correlation

• Impact of optical amplifier and electronic noise

• Measurement noise floor sets a limit on frequency range (<10 MHz)

• Measurement noise floor sets a limit on range (<150 dB rad2/Hz)

• Require relatively high input powers (>0 dBm) 

• Cannot distinguish noise contribution from cavity itself and optical amplifier

State-of-the-art methods are not optimal according to statistical learning theory  
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Unifying framework for noise characterization

Laser or 
comb

A
n

al
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e
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o
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rt
er

 (
A

D
C

)

LO

PD

P
D

M
ac

h
in

e
 le

ar
n

in
g 

fr
am

e
w

o
rk

Phase Noise (PN)

Relative Intensity 
Noise (RIN)

Amplitude and phase 
noise correlation matrix

Frequency

Frequency

Record sensitive optical phase measurement demonstrated (-75 dBm, -200 dB rad2/Hz, 20 GHz)

[1] D. Zibar et al, PTL 2019
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Conventional phase measurement 

𝑦𝑘
𝑞
= 𝐴𝑘 sin Δ𝜔𝑘𝑇𝑠 + 𝜙𝑘

∠

ℋ
Discrete Hilbert transform

mean

detrend

Angle

Remove constant and 
linear trend from the 

time sequence

𝑗

𝑦𝑘
𝑖 + 𝑗𝑦𝑘

𝑞

𝜙𝑘
Phase noise

෨𝜙𝑘

Total phase

Remove the DC 
component of the 

signal

Reconstruct the 
orthogonal quadrature 

component

Extract the angle of 
the complex number

𝑦𝑘
𝑖 = 𝐴𝑘 cos Δ𝜔𝑘𝑇𝑠 + 𝜙𝑘 + 𝑟𝑘

Δ𝜔

Intermediate 
frequency

periodogram

𝑃𝑁 Phase noise power 
spectral density
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Numerical illustration
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Bayesian filtering based phase extraction

mean

Remove the DC 
component of the 

signal

𝑦𝑘
𝑖 = 𝐴𝑘 cos Δ𝜔𝑘𝑇𝑠 + 𝜙𝑘 + 𝑟𝑘

Model 

parameter 

estimation

Extended 

Kalman filter 𝜙𝑘
Phase noise

𝑦𝑘
𝑖 = 𝐴 cos Δ𝜔𝑘𝑇𝑠 + 𝜙𝑘 + 𝑟𝑘

𝜙𝑘 = 𝜙𝑘−1 + 𝑞𝑘
𝜙

The model we are using The parameters:

𝑞𝑘
𝜙
∼ 𝒩 0, 𝜎𝜙

2

𝑟𝑘 ∼ 𝒩 0, 𝜎𝑟
2

𝜎𝜙
2

𝜎𝑟
2

Δ𝜔
𝐴

Phase noise variance

Measurement noise variance

Intermediate angular frequency

periodogram

𝑃𝑁 Phase noise power 
spectral density

Average signal amplitude
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Bayesian filtering approach not limited by thermal noise

39
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Quantum limited phase estimation

40
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Experimental results on low-noise lasers (joint work with UCSB)

Identification of quantum noise contribution – lower bound on phase noise 
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Identification of fundamental linewidth (ultra low-noise fiber laser)
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Quantum-limited optical communication
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Ultra-sensitive frequency noise measurement
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Quantum limited Bit error rate performance

Negligible penalty compared to the quantum limit bit error rate
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Characterization of frequency combs

Balanced 
receiver

Source 
comb

Local oscillator 
(LO) reference 

comb

Dual comb multiheterodyne set-up

Δ𝜈 + 𝛿𝜈

Δ𝜈

The noise of the down-mixed comb is given by the 
contribution of the reference comb and the source 
comb

It is possible to characterize the source comb when the 
reference contribution can be neglected or they equally 
contribute

𝛿𝜈
Down-mixed digitized 

comb

The k-th sample of the down-digitized comb can be described in time 
domain as a summation of beating tones

𝑦𝑘 = 

𝑚=1

𝑀

ҧ𝐴𝑚 1 + 𝑎𝑘
𝑚 cos Δ𝜔𝑚𝑘𝑇𝑆 + 𝜙𝑘

𝑚 + 𝑛𝑘
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Conventional phase noise extraction

From the downconverted comb, 

extraction of amplitude and phase 

noise

BP(1)

ℋ[⋅]

LD[⋅]

atan[⋅] abs[⋅]

LD[⋅]

BP(2)

ℋ[⋅]

LD[⋅]

atan[⋅] abs[⋅]

LD[⋅]

BP(M)

ℋ[⋅]

LD[⋅]

atan[⋅] abs[⋅]

LD[⋅]

Bandpass filter for 
each line

Hilbert transform

Extract phase and amplitude 
information

Linear detrend to characterize 
only the noise

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

𝜙𝑘
1 𝑎𝑘

1 𝜙𝑘
2 𝑎𝑘

2 𝜙𝑘
𝑀 𝑎𝑘

𝑀

Problem! Measurement noise affect the comb noise estimation

Parallel processing of all the frequency 
lines (generalization of a single line)

𝑦𝑘
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Bayesian filtering for joint amplitude and phase 

noise estimation

Hidden state: phase and amplitude noise of all lines

𝝓𝑘

𝛿𝑨𝑘
=

𝝓𝑘−1

𝛿𝑨𝑘−1
+ 𝒒𝑘−1, with 𝒒𝑘−1 ∼ 𝒩 0,𝐐 ,𝐐 =

𝐐𝜙 𝐐𝜙𝐴

𝐐𝐴𝜙 𝐐𝐴

Phase and amplitude model: Multidimensional Gaussian 
random walk

𝝓𝑘 =

𝜙𝑘
1

𝜙𝑘
2

⋮
𝜙𝑘
𝑀

𝛿𝑨𝑘 =

𝛿𝐴𝑘
1

𝛿𝐴𝑘
2

⋮
𝛿𝐴𝑘

𝑀

With M lines, we have M phase 
noise sequences and M amplitude 
noise sequences

EKF algorithm

𝜙𝑘
1

𝜙𝑘
𝑀. . .

𝐐opt

𝑎𝑘
1

𝑎𝑘
𝑀

EKF (𝑘 = 1…𝐾)

EKS (𝑘 = 𝐾…1)

𝐐 𝑛+1Converged?
n

y

𝑦𝑘

[1] G. Brajato et al, Optics Express 2020

𝑦𝑘 = 

𝑚=1

𝑀

ҧ𝐴𝑚 1 + 𝛿𝐴𝑘
𝑚 cos Δ𝜔𝑚𝑘𝑇𝑆 + 𝜙𝑘

𝑚 + 𝑛𝑘
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Data generation: EO combs

Electro optic comb generation

𝜙𝑘
𝑚 = 𝜙𝑘

𝐿 +𝑚𝜙𝑘
𝑅𝐹 The phase noise of each line has 

two independent contributions

Var 𝜙𝑘
𝑚 = Var 𝜙𝑘

𝐿 +𝑚2Var 𝜙𝑘
𝑅𝐹

Cov 𝜙𝑘
𝑚𝜙𝑘

𝑛 = Var 𝜙𝑘
𝐿 +𝑚𝑛Var 𝜙𝑘

𝑅𝐹

Covariance of the phases Correlation of the phases

Corr 𝜙𝑘
𝑚𝜙𝑘

𝑛 =
Cov 𝜙𝑘

𝑚𝜙𝑘
𝑛

std 𝜙𝑘
𝑚 std 𝜙𝑘

𝑚

The correlation matrix is re-scaled 
such that it’s maximum value is 1.

The covariance matrix describe how 
the noise variance affect different 
comb lines

Cov 𝝓𝑘𝝓𝑘
⊤ = 𝚺 = 𝒄𝒄⊤𝜎𝐿

2 + 𝒉𝒉⊤𝜎𝑅𝐹
2

𝒄 = 1,1,… 1
𝑀 𝑙𝑖𝑛𝑒𝑠

⊤

𝒉 = −H,−H + 1,… , 0,… , H − 1, H
𝑀 𝑙𝑖𝑛𝑒𝑠

⊤

H =
𝑀

2
+ 1𝑚 = −H,−H + 1,… , 0,… , H − 1, H

Relative line index

Correlation describes how similar are 
two lines. 

1 = perfectly correlated lines

0 = uncorrelated lines

-1 = anticorrelated lines
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Building phase correlation matrices 

The covariance can be estimated after estimating the phases

𝚺𝑁,𝑙 =
1

𝑁 − 1


𝑘=𝑙

𝑙+𝑁

𝝓𝑘 − ഥ𝝓 𝝓𝑘 − ഥ𝝓 ⊤

We are free to choose:

- The starting point 𝑙 for estimating the covariance 
matrix

- The number of contiguous samples 𝑁 we use 
for estimating a covariance matrix

We can define the observation time 𝜏𝑜𝑏𝑠 = 𝑁𝑇𝑠

We can calculate a covariance matrix, hence do an eigenvalue decomposition for different 
observation times

This allow to identify what are the dominant noise sources at shorter and longer timescales

The noise sources will be identified by the corresponding eigenvector

The difference with PCA: PCA does the same but using the full signal length, this approach shows the 
principal component at different observation times
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Frequency comb phase noise correlation matrix 
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Combs lines phase variance

Machine learning methods provides more accurate estimations

(a) Simulations (b) Experimental
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Sub-space analysis: Eigenvalue decomposition

Cov 𝝓𝑘𝝓𝑘
⊤ = 𝚺 = 𝒄𝒄⊤𝜎𝐿

2 + 𝒉𝒉⊤𝜎𝑅𝐹
2 = 𝐕𝚲𝐕⊤ =

𝑖=1

𝑀

𝒗𝑖𝜆𝑖𝒗
𝒊⊤

𝜆𝑖 is the eigenvalue

𝒗𝑖 is the orthonormalized

eigenvalue (or eigenmode)In our case, we find that only two eigenvalues are 
significant ( by comparing both sides and orthogonality 
arguments)

By normalizing 𝒄 and 𝒌, and exploiting the symmetry

ො𝒄𝜎𝐿
2 𝒄 2 + 𝒉𝜎𝑅𝐹

2 𝒉 2 = 𝒗1𝜆1 + 𝒗2𝜆2

𝜎𝐿
2 𝒄 2 = 𝜆1

𝜎𝑅𝐹
2 𝒉 𝟐 = 𝜆2

Eigenvalues are 
“proportional” to the 
strength (variance) of 
the noise sources

ො𝒄 = 𝒗1

𝒉 = 𝒗2

Eigenvectors describe 
the direction of the 
noise source, in this 
case what comb lines are 
affected by a given noise 
source

Eigenvalue decomposition on the 
covariance matrix helps to identify the 
independent and meaningful 
components. 

ො𝒄 𝒄 2 = 𝒄

𝒉 𝒉 2 = 𝒉

𝒄 = 1,1,… 1
𝑀 𝑙𝑖𝑛𝑒𝑠

⊤

𝒉 = −H,−H + 1,… , 0,… , H − 1, H
𝑀 𝑙𝑖𝑛𝑒𝑠

⊤
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Covariance Eigenvalue dynamics (experimental)

Uncorrelated 
phases for 
short 
observation 
times

Correlated 
phases for long 
observation 
times
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Extraction of laser and RF noise contributions

𝝓1:𝑇 ≔ 𝚽 𝑀 × 𝑇

𝚽⊤ ⋅
𝒉

𝒉 𝟐
= 𝜙𝑅𝐹

𝚽⊤ ⋅
𝒄

𝒄 𝟐
= 𝜙𝐿

𝒄 = 1,1,… 1
𝑀 𝑙𝑖𝑛𝑒𝑠

⊤

𝒉 = −H,−H + 1,… , 0,… , H − 1, H
𝑀 𝑙𝑖𝑛𝑒𝑠

⊤

𝑀 × 1

𝑀 × 1

Similar to principal 
component projection
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End-to-end learning for fiber-optic channels

[1] T. O'Shea and J. Hoydis “An introduction to deep learning for the physical layer,” IEEE TRANSACTIONS ON COGNITIVE 
COMMUNICATIONS AND NETWORKING, VOL. 3, NO. 4, 2017

[2] B. Karanov et al., “End-to-end deep learning of optical fibre communication,” Journal of Lightwave Technology, vol. 36, no. 
20, 2018

[3] R. Jones, D. Zibar et al., “Deep learning of geometric constellation shaping including fiber nonlinearities,”  in Proceedings of  
ECOC 2018

[4] R. Jones, D. Zibar et al., “End-to-end for GMI optimized geometric deep learning of geometric constellation shaping 
including Fiber,”  in Proceedings of  ECOC 2019

[5] O. Jovanovic. D. Zibar et al.’“Gradient-Free Training of Autoencoders for Non-Differentiable Communication Channels,” 
Journal,” vol. 31, no. 20, 2021 

[6] O. Jovanovic, D. Zibar et al., “End-to-end learning of a Constellation Shape Robust to variations in SNR and laser 
Linewidth,” In Proceedings of European Conference on Optical Communication (ECOC), 2021, (2nd place ADVA best paper 
award)

[7] J. Aoudia et al., "End-to-end learning of communications systems without a channel model." arXiv preprint 
arXiv:1804.02276 (2018)
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Standard coherent communications
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Kerr nonlinearity is one of the ultimate limits to increasing system performance

Reduce gap by constellation shaping
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Typical optimization strategies

Geometric shaping 
– optimize the set of 
points 𝒳. Typically 
assume 𝑃𝑿 𝑿 ~𝒰 0, 𝑃𝑎𝑣

Probabilistic shaping –
optimize the probability 
mass function 𝑃𝑿 𝑿 for a 
given constellation set 𝒳

Signal 𝑌, AWGN channel with 
SNR=25dB
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Forward channel model for the optical fiber

Fiber loss

Chromatic dispersion

Nonlinear Kerr effect

Average power

Modulation
property (peak power)

The nonlinear interference noise (NLIN) model:

R. Dar et al., Opt. Exp. 21(22) (2013), pp. 25685-25699

Dual power constraint – nonobvious optimal 
characteristics and optimization strategies
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Learning to mapping using auto-encoders

Input Space: Output Space:

Fiber

Channel

Model

1
0
0
0

0
1
0
0
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0
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I

Q Q

I

Auto-encoder learns constellation robust to channel impairments
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Channel Models

Fiber Channel:

5 WDM Channel System

50 GHz Channel spacing

SSMF

32 GHz Bandwidth

2000 km transmission

20 Spans

• GN Model and NLIN Model[1,2] for learning

• Propagation using SSFM

• For the NLIN Model the nonlinearities depend 

on the moment of the constellation

[1] A. Carena, et al., “Modeling of the impact of nonlinear 
propagation effects in uncompensated optical coherent 
transmission links,” J. Lightw. Technol., vol. 30, no. 10, pp. 1524–
1539, May 15, 2012.

[2] R. Dar et al. ''Properties of nonlinear noise in long, dispersion-
uncompensated fiber links.'' Opt. Exp. 21.22 (2013): 25685-25699.

6th order moment = 2.23

4th order moment = 1.38

For 64 QAM:
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Order 16

66

Training process 

Encoder Decoder

Cross entropy loss

C
h
a
n
n
e
l

I

Q

I

Q

• Stochastic optimization

• Iterative training process

• Gradient based
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67

Training process

Order 64

Encoder Decoder

Cross entropy loss

C
h
a
n
n
e
l

I

Q

I

Q

• Stochastic optimization

• Iterative training process

• Gradient based
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Comparison of constellations

64 Auto-encoder64 QAM 64 IPM[6]

[1] I. B. Djordjevic et al. ''Coded polarization-multiplexed iterative 
polar modulation (PM-IPM) for beyond 400 Gb/s serial optical 
transmission.'' OFC, paper OMK2, (2010).

Gaussian channel
assumption

Trained via NLIN Model
with optimized moments

35



Evolution of learned constellations

Low Power High Power

Optimal Power
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Scaling of the moments of learned constellations

6th order moment 

4th order moment 

Auto-encoder learns constellation with reduced moment
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Simulation results

M=64 M=256
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Gains compared to the standard QAM
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Conclusion and outlook

• Machine learning toolbox brings significant advantages to photonics 

• Machine learning effective in learning complex mappings

– Optical amplifier design

– Communication over fiber-optic channel

– Noise characterization of lasers and frequency combs

– Quantum noise limited tracking

• Many other problems could benefit from ML (e.g. component design, power allocation etc)

• A lot of room for interesting research problems

• ML toolbox part of electrical and photonics engineering curriculum 

• Lack of researchers that understand ML and optics to advance the field
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