Next-generation NVMe storage for HPC systems with specialized hardware

Philippe Bonnet

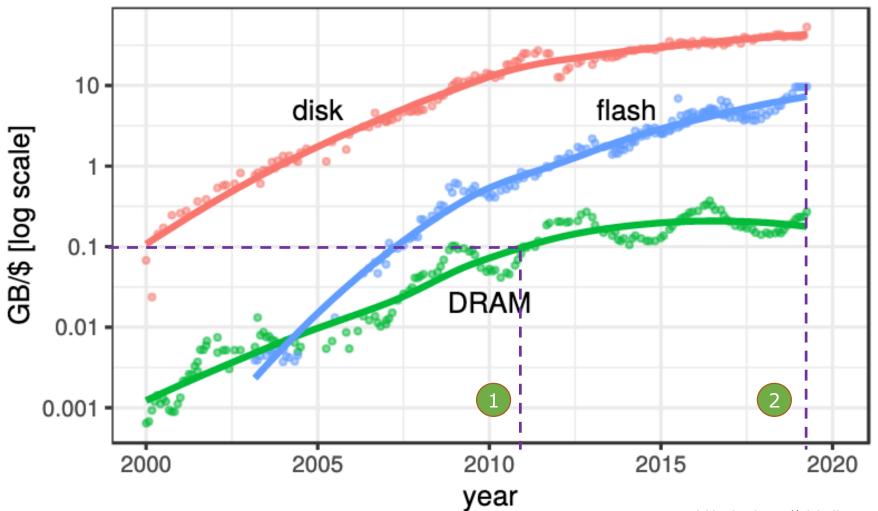
phbo@itu.dk

DASYA, Computer Science, IT University of Copenhagen

Storage Devices

Storage Drives

- Embedded storage media
- Examples: Solid State Drives (SSDs), Hard-Disk Drives (HDDs), tape.
- Composed of host-controller interface, **storage controller** and storage media.
- Connected to a single host via interconnect or fabric.


• Storage Hubs

- Expose a uniform interface to one or several underlying storage drives.
- Examples: Disk arrays, Functional Accelerator Cards.
- Composed of host-controller interface, storage processor and backplane interface to storage drives.
- Connected to multiple hosts via interconnect or fabric.

Fundamental Trends:

Memory is what disks used to be

Flash is 20X cheaper than RAM

1

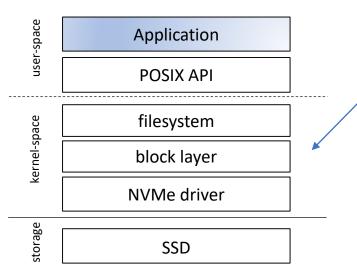
2

V.Leis: http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf

From HDD to SSD ^(*)

Not your Grandpa's SSD: The Era of Co-Designed Storage Devices

Ƴin oổ f ≌

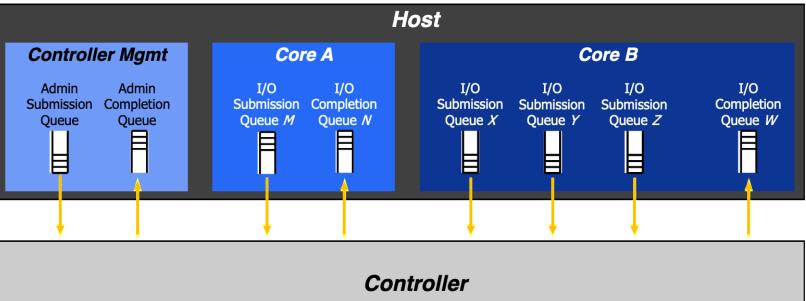

Authors: 📳 Alberto Lerner, 鑙 Philippe Bonnet 🛛 Authors Info & Claims

SIGMOD/PODS '21: Proceedings of the 2021 International Conference on Management of Data + June 2021 + Pages 2852-2858 + https://doi.org/10.1145/3448016.3457540

I/O Performance (2020)	I/O performance does not matter	I/O performance is crucial
HDD disk seek: 2msec 1 MiB seq. read: 718 usec	POSIX file with buffered I/O on top of Block-based HDD	Custom buffer management with direct POSIX I/Os on top of Block-based HDD
SSD (*) rand. read: 16 usec 1 MiB seq. read: 39 usec	POSIX file with buffered I/O on top of Block-based SSD	Beyond POSIX and Blocks with NVMe SSDs

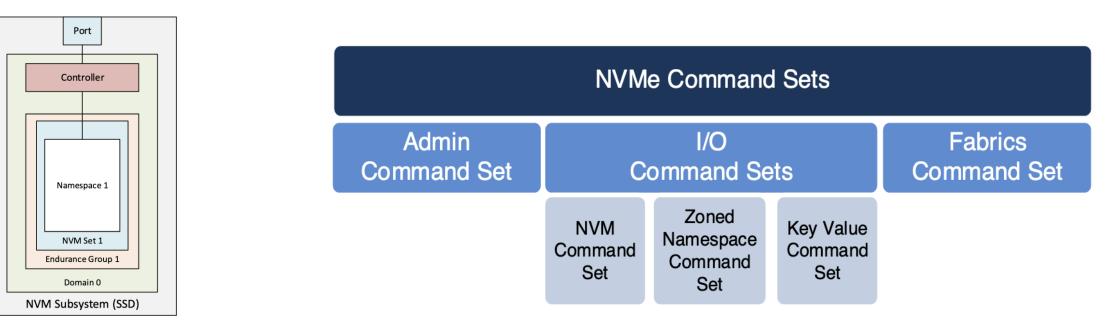
^(*) SSDs are not a uniform class of devices. Continuum from latency-optimized (Z-NAND) to archival.

Deeper Dive into NVMe



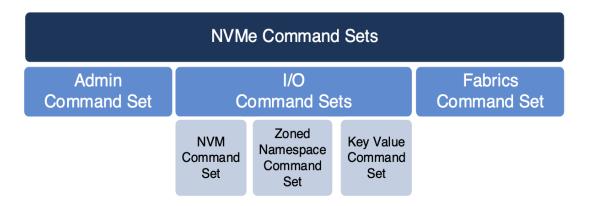
Hosts and controllers communicate through pairs of submission/ completion queues.

The queues are located in memory-mapped address space either on the host or on the device.


• NVMe is a host-controller interface specification

- Designed to attach SSDs directly to the PCIe fabric.
- First specification in 2011. Consortium led by Intel.
- NVMe 2.0 released on 3/6/2021

NVMe Abstractions


Namespaces

- A namespace is a formatted quantity of non-volatile memory that may be accessed by a host.
- Each namespace has an ID, a size, a capacity (max number of LBAs used), and a utilization

Command sets are the operations associated to a namespace

Command Sets

NVMe Command Sets

- Admin command set include the creation and deletion of submission/completion queues, as well as primitives for device identification, or getting log-pages, device capabilities, and features.
- Three types of I/O command sets:
 - NVM: The namespace is a collection of logical blocks, with read, write, write-zeroes commands. This is the block device abstraction.
 - Zoned: The namespace is partitioned into zones. Each zone is a collection of logical block addresses. The command set establishes that logical blocks must be written sequentially within a zone and that zones must be reset before they are written. It also defines the append command.
 - Key-Value: The namespace is organized as a collection of key-value pairs. The maximum key size is 16B. The commands supported are store/retrieve, list, exist, delete.

Copenhagen is where next-generation NVMe storage systems are developed

FlexAlloc: a lightweight building-block for user-space data management.

Virtual Conference September 28-29, 2021

Jesper Devantier Joel Granados Adam Manzanares

SD€

Samsung Electronics (Denmark) Samsung Electronics (Denmark) Samsung Electronics (USA)

SEPTEMBER 28-29. VIRTUAL EVENT

Enabling Asynchronous I/O Passthru in NVMe-Native Applications

Javier Gonzalez, Principal Software Engineer, Samsung Electronics Kanchan Joshi, Staff Engineer, Samsung Semiconductor India Research (SSIR) Simon Lund, Staff Engineer, Samsung Electronics

www.storagedeveloper.org

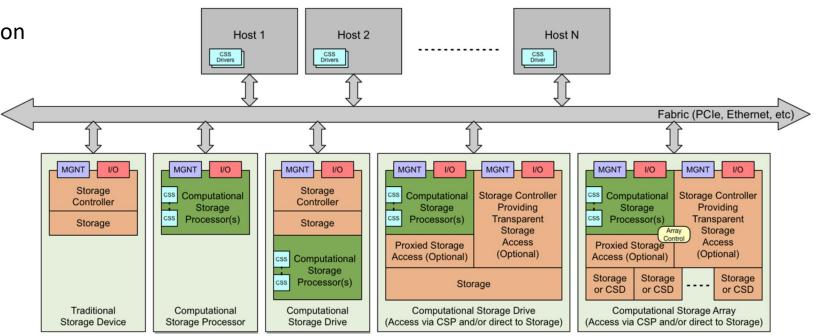
Computational Storage

Los Alamos announces details of new computational storage deployment

November 16, 2020

Computational Storage

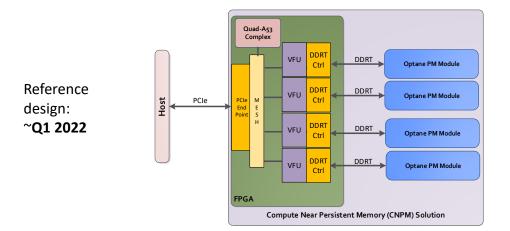
- Programmable storage controller/processor:
 - Programmable storage drive: In-storage processing
 - Storage controller: MPSoC (Multi-Processor System on a Chip integrating ARM cores and FPGA)
 - Programmable storage hub: Near-data processing
 - Storage processor: CPU, MPSoC or Data Processing Unit (ARM core with hardware accelerated functions, e.g., NVMe controller).


• Computational storage is a means to

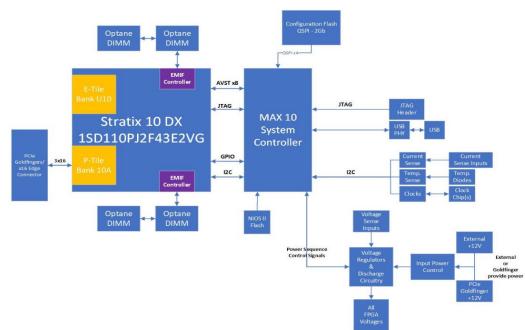
- decrease data movement and thus improve the cost-performance of data-intensive applications
- gracefully scale compute capacity with volume of stored data
- (i) reduce power consumed thanks to low power CPUs and (ii) improve energy proportionality thanks to low power modes when not processing.

Architecture View: SNIA Terminology

Computational Storage Processor (CSP)


- Provides computational Storage Services (CSS)
 - Fixed: compression, encryption
 - Programmable: installed via code upload
 - OS image
 - Container application
 - FPGA bitstream
 - eBPF bytecode

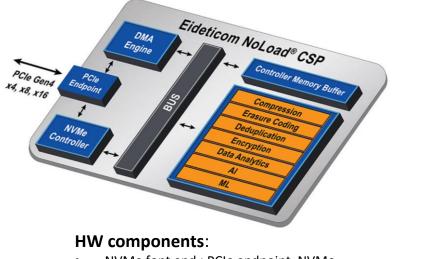
SNIA. Computational Storage Architecture and Programming Model. V0.5, Rev 1. Aug 2020.


Computational Storage Device - Intel Kestral

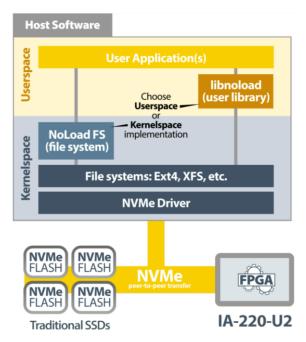
- Allows Optane Pmem connectivity over PCIe (without using Xeon DDR ports)
- Total capacity: 2TB, (4x512GB Pmem); PCIe Gen4 x16
- Key Components:
 - Intel[®] Optane[™] persistent memory 100 series
 - Intel Stratix 10 DX FPGA
- Power: <150W
- Full Height; Half Length (FHHL) card (two slots)
- ARM core available
- Max 10 System Controller (Power Sequencing, Temp and Power Monitor, Remote System Update, debug...)
- Health monitoring for Optane DIMMs

Potential usage scenario:

- Connected as a block device (Paging with DSA/NVMe)
 - Will likely gain a few us latency but could be prohibitively expensive for most usecases.
- Connected as a P2P compute device with large memory
 - For usecases benefiting from offloaded compute and large memory capacity
- Connected as a standalone computational memory accelerator
 - Independent acceleration without too much dependance or data movement from the host/peer devices. e.g. accelerating a training model with new data units (text, pictures)


Computational Storage Device – Bittware IA-220-U2

Bittware PCIe FPGA Board:



https://www.bittware.com/fpga/ia-220-u2/

Eideticom NoLoad IP:

- NVMe font end : PCIe endpoint, NVMe controller, DMA engine...
- CSS HW –accelerated services (Compresion,...)

SW components (host SW):

- libnoload: modifing applications to use library (OS remain untouched)
- NoLoad FS: use filesystem as a shim (user appliactions needs zero changes)

"Intended to be deployed within conventional U.2 NVMe storage arrays (approximately 1:8 ratio) allowing FPGA-accelerated instances of:

- Erasure Coding and Deduplication
- Compression, Encryption & Hashing
- String/Image Search and Database Sort/ Join/Filter
- Machine Learning Inference"

Computational Storage Device – Bittware IA-840F

https://www.bittware.com/fpga/ia-840f/

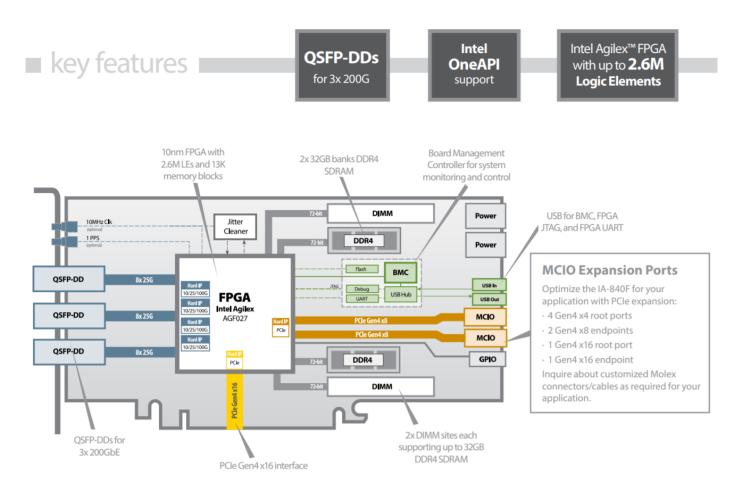
Enterprise-Class Intel Agilex Based FPGA Accelerator

Intel OneAPI support!

Connectors for cable connection to NVMe SSDs.

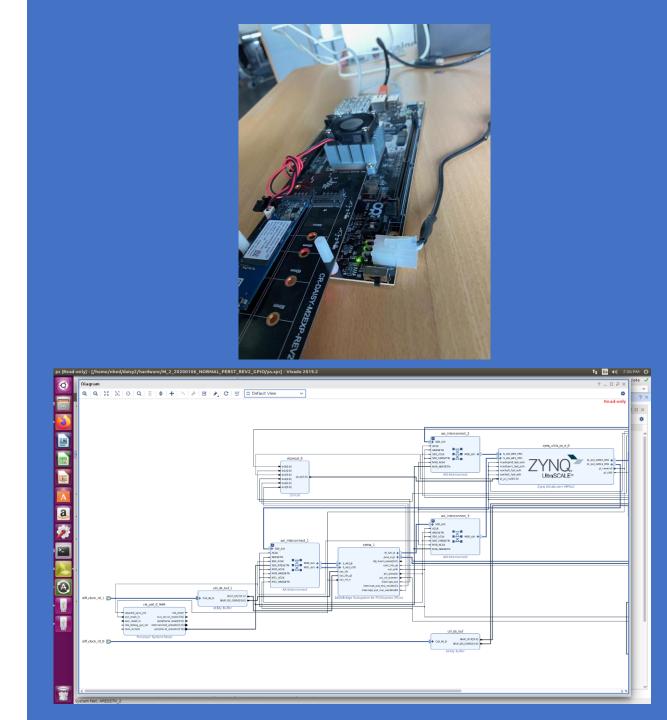
Intel Agilex:

•2nd-Generation HyperFlex Architecture:


Up to 40 percent higher performance or up to 40 percent lower total power compared with Stratix 10 FPGAs.

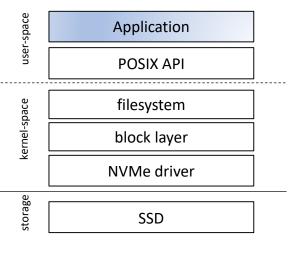
•DSP Innovation:

•Supports hardened BFLOAT16 and up to 40 teraflops of digital signal processor (DSP) performance (FP16).


Advanced memory support:

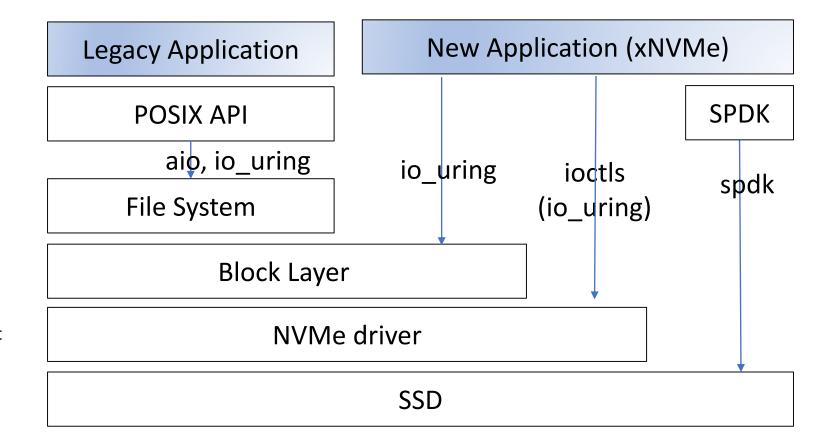
•DDR4, QDR-II+ (through custom BittWare DIMMs) and Intel Optane DC persistent memory.

OpenSSD Daisy


- PClex16 Gen3 | 100GE
- MPSoC (Zynq Ultrascale+)
 - ARMv8 Cortex A-53 (4 cores) LPDDR4 (4GB) running Embedded Linux
 - FPGA connected to peripherals Xilinx IP
- 2xM.2 connectors

Programming Computational Storage

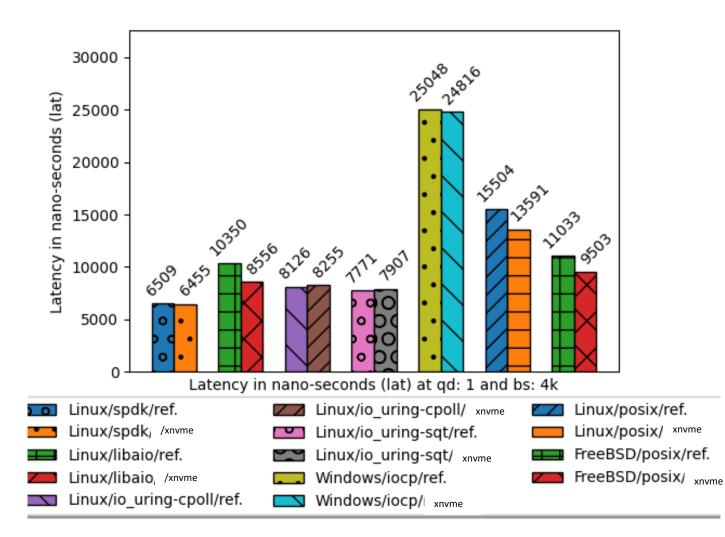
- Defining new storage interfaces:
 - Computational storage enables a co-design of data-intensive applications and storage interfaces
 - boot/config time via OS image, bitstream, container application
- Shipping code from host to storage
 - Bytecode is generated on host (*at compile time*) and shipped to computational storage (*at run time*)
 - SNIA points out eBPF
 - Eid-Hermes: https://github.com/Eideticom/eid-hermes
 - Other alternatives should be explored



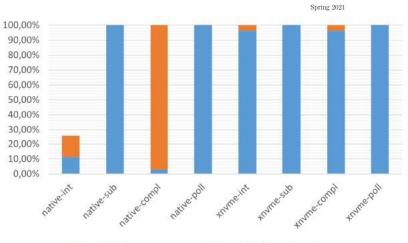
File system extensions for ZNS In F2FS, XFS

mlq-blk for NVMe since 2013

No support for KV in NVMe driver yet

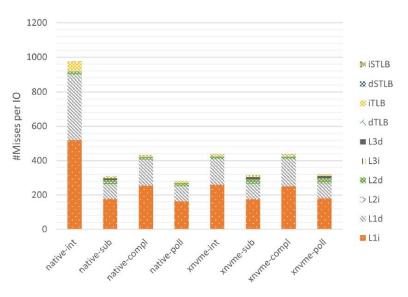

An Analysis Of New Generation SSDs and Storage Stack

Andreas Blanke and Magnus Krøyer


IT-University of Copenhagen

Supervisors: Philippe Bonnet and Pinar Tözün

I/O Frameworks



Simon Lund et al. Under Submission.

cpu utilization - user space

cpu utilization - kernel space

Conclusion

- 1. The storage software stack must be adapted to leverage the capabilities of modern (NVMe) storage devices.
- 2. Computational storage as a means to improve cost-performance, scalability and energy-proportionality.
- 3. Standard expected in 2022 (NVMe Computational Storage command set). Products already on the market. Deployments in largest HPC clusters and hyperscalers.