
Anders E. Kalør, 4. november 2021
aek@es.aau.dk

Edge Computing on the Edge
DeiC Konference 2021

Computing flytter sig mod kanten af netværket

• Ph.d.-studerende ved Aalborg Universitet (Connectivity-sektionen)

• Forsker i fremtidens (trådløse) kommunikationsteknologier:

• Teknologier til at understøtte Internet of Things

• Integration mellem kommunikation og computing

• Intelligent kommunikation ved brug af AI/ML

Om mig

Traditionelt er skyen placeret
centralt, langt fra enhederne

I edge computing flyttes computing
tættere på enheden

Helt op til enheden

Hybrid

Hvorfor edge computing?

• Høj latenstid mellem enheden og skyen

• Bedre skalerbarhed når antallet af enheder og
datamængden stiger

• Potentielt højere pålidelighed

• Mere privatliv til enheden

• At minimere latenstiden har
været et centralt fokus i 5G (og er
i 6G)

• Forbindelsen til skyen udgør i
stigende grad en flaskehals

• Latenstiden kan minimeres ved
at placere “en sky” hos
teleudbyderen, eller helt ude ved
mobilmasten

Latenstid

• Flere ting bliver forbundet til
Internettet og afhænger af AI/
ML/lign.

• Mængden af data stiger

• Maskering af cloud
(u)pålidelighed

Skalerbarhed, pålidelighed

• IoT er blevet en del af vores
hverdag

• Vi ønsker ikke at billeder, tale,
osv. skal sendes til skyen

Privatliv

Apple’s Siri

• Lytter konstant efter “Hej Siri”

• Kun hvis det detekteres, sendes
lydoptagelsen til en server i skyen

• Serveren kører optagelsen
igennem en bedre model

• Lydoptagelserne i skyen bruges
til træning

https://machinelearning.apple.com/research/hey-siri

Fordeling mellem enhed og server

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Latenstid Model-
kapacitet

Kommun.-
overhead

Matsubara, Yoshitomo, Marco Levorato, and Francesco Restuccia. "Split computing and early exiting for deep
learning applications: Survey and research challenges." arXiv preprint arXiv:2103.04505 (2021).

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Fordeling mellem enhed og server

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Latenstid Model-
kapacitet

Kommun.-
overhead

Matsubara, Yoshitomo, Marco Levorato, and Francesco Restuccia. "Split computing and early exiting for deep
learning applications: Survey and research challenges." arXiv preprint arXiv:2103.04505 (2021).

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Fordeling mellem enhed og server

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Latenstid Model-
kapacitet

Kommun.-
overhead

Matsubara, Yoshitomo, Marco Levorato, and Francesco Restuccia. "Split computing and early exiting for deep
learning applications: Survey and research challenges." arXiv preprint arXiv:2103.04505 (2021).

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Fordeling mellem enhed og server

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Latenstid Model-
kapacitet

Kommun.-
overhead

Matsubara, Yoshitomo, Marco Levorato, and Francesco Restuccia. "Split computing and early exiting for deep
learning applications: Survey and research challenges." arXiv preprint arXiv:2103.04505 (2021).

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g

Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Federated learning

Hvis dataen er hos enhederne, hvordan skal modellerne så trænes?492 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 1, JANUARY 2020

Fig. 1. Federated edge learning from wirelessly distributed data.

aggregation. The iteration continues until the global model
converges and each iteration is called a communication round.
The updates computed locally at edge devices can be either
the model parameters [6] or gradient vectors [7], giving rise
to two implementation approaches, i.e., model-averaging and
gradient-averaging.

In view of high dimensionality in updates (each contains
e.g., millions of parameters), a main theme in the FEEL
research is to develop communication-efficient strategies for
fast update-uploading to accelerate learning. There exist three
main approaches. The first addresses the straggler issue,
namely that the slow devices (stragglers) dominate the overall
latency due to update synchronization required for aggrega-
tion. To reduce latency, a partial averaging scheme is proposed
in [8] where only a portion of updates from those fast-
responding devices are used for global model updating, while
those from stragglers are discarded. Later, the design was
enhanced by coding the updates such that the full update-
averaging can be still realized using only a portion of coded
updates [9]. The second approach also aims at reducing the
number of transmitting devices, but the scheduling criterion is
update significance instead of computation speed [10], [11].
For model averaging implementation, the update significance
is measured by the model variance which indicates the diver-
gence of a particular local model from the average across all
local models [10]. On the other hand, for gradient averaging,
the update significance is measured by gradient divergence
that reflects the level of change on the current gradient update
w.r.t. the previous one [11]. The last approach focuses on
update compression by exploiting the sparsity of gradient
updates [12], [13].

The prior work by computer scientists focuses on reduc-
ing the number of updating devices and compressing the
information for transmission. It represents a computer-science
approach for tackling the communication-latency problem in
the FEEL systems. Wireless channels therein are abstracted
as “bit pipes” that overlook the possibility of exploiting the
channels’ sophisticated properties (e.g., fading, multi-access,
and spatial multiplexing) for latency reduction. Thus, a more
direct and perhaps more fundamental approach for solving
this communication problem is to develop wireless commu-
nication techniques to support low-latency FEEL. We adopt
the new approach in this work and focus on designing a

multi-access scheme for communication-efficient FEEL. The
classic orthogonal-access schemes (e.g., OFDMA or TDMA)
have been designed for supporting independent links. Their
applications to edge learning can cause the multi-access
latency to scale linearly with the number of edge devices and
thus are inefficient. To overcome the drawback, we propose the
low-latency BAA scheme for leveraging simultaneous broad-
band transmissions to implement update aggregation “over-
the-air” in FEEL systems.

B. Over-the-Air Computation

The current BAA scheme builds on the classic idea of over-
the-air computation (AirComp). The idea of AirComp can be
traced back to the pioneering work studying functional compu-
tation in sensor networks [14]. The design relies on structured
codes (i.e., lattice codes) to cope with channel distortion
introduced by the multi-access channel. The significance of
the work lies in its counter-intuitive finding that “interference”
can be harnessed to help computing. It was subsequently
discovered in [15] that simple analog transmission without
coding but with channel pre-equalization can achieve the
minimum distortion if the data sources are independent and
identically distributed (i.i.d.) Gaussian. Nevertheless, coding
can be still useful for other settings if the sources follow
more complex distributions such as bivariate Gaussian [16]
and correlated Gaussian [17]. The satisfactory performance
and simplicity of analog AirComp has led to an active area
focusing on robust design and performance analysis [18]–
[21]. In particular, techniques for distributed power control
and robust AirComp against channel estimation errors are
proposed in [18] and [19], respectively. Theoretical analysis on
the AirComp outage performance under a distortion constraint
and the computation rate, defined as the number of functions
computed per time slot, were provided in [20] and [21],
respectively. Another vein of research focuses on transforming
AirComp from theory into practice by prototyping [22] and
addressing the practical issue of synchronization over sensors
[23], [24]. In [23], the authors proposed to modulate the
data into transmission power to relax the synchronization
requirement such that only coarse block-synchronization is
required for AirComp. An alternative scheme, called AirShare,
is developed in [24] which broadcasts a shared clock to all
devices to enforce synchronization.

Zhu, Guangxu, Yong Wang, and Kaibin Huang. "Broadband analog aggregation for low-latency federated edge
learning." IEEE Transactions on Wireless Communications 19.1 (2019): 491-506.

Google’s Gboard tastatur

A. Personalisering

B. Aggregering af modeller (gradienter)

C. Modelopdatering

Hard, Andrew, et al. "Federated learning for mobile keyboard prediction." arXiv preprint arXiv:1811.03604 (2018).

FEDERATED LEARNING FOR MOBILE KEYBOARD PREDICTION

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays
Sean Augenstein, Hubert Eichner, Chloé Kiddon, Daniel Ramage

Google LLC,
Mountain View, CA, U.S.A.

{harda, kanishkarao, mathews, swaroopram, fsb
saugenst, huberte, loeki, dramage}@google.com

ABSTRACT

We train a recurrent neural network language model us-
ing a distributed, on-device learning framework called fed-
erated learning for the purpose of next-word prediction in
a virtual keyboard for smartphones. Server-based training
using stochastic gradient descent is compared with training
on client devices using the FederatedAveraging algo-
rithm. The federated algorithm, which enables training on a
higher-quality dataset for this use case, is shown to achieve
better prediction recall. This work demonstrates the feasibil-
ity and benefit of training language models on client devices
without exporting sensitive user data to servers. The federated
learning environment gives users greater control over the use
of their data and simplifies the task of incorporating privacy
by default with distributed training and aggregation across a
population of client devices.

Index Terms— Federated learning, keyboard, language
modeling, NLP, CIFG.

1. INTRODUCTION

Gboard — the Google keyboard1— is a virtual keyboard for
touchscreen mobile devices with support for more than 600
language varieties and over 1 billion installs as of 2019. In
addition to decoding noisy signals from input modalities in-
cluding tap and word-gesture typing, Gboard provides auto-
correction, word completion, and next-word prediction fea-
tures.

As users increasingly shift to mobile devices [1], reli-
able and fast mobile input methods become more important.
Next-word predictions provide a tool for facilitating text en-
try. Based on a small amount of user-generated preceding
text, language models (LMs) can predict the most probable
next word or phrase. Figure 1 provides an example: given
the text, “I love you”, Gboard predicts the user is likely to
type “and”, “too”, or “so much” next. The center position
in the suggestion strip is reserved for the highest-probability

1gboard.app.goo.gl/get

Fig. 1. Next word predictions in Gboard. Based on the con-
text “I love you”, the keyboard predicts “and”, “too”, and “so
much”.

candidate, while the second and third most likely candidates
occupy the left and right positions, respectively.

Prior to this work, predictions were generated with a word
n-gram finite state transducer (FST) [2]. The mechanics of
the FST decoder in Gboard — including the role of the FST
in literal decoding, corrections, and completions — are de-
scribed in Ref. [3]. Next word predictions are built by search-
ing for the highest-order n-gram state that matches the pre-
ceding text. The n-best output labels from this state are re-
turned. Paths containing back-off transitions to lower-orders
are also considered. The primary (static) language model for
the English language in Gboard is a Katz smoothed Bayesian
interpolated [4] 5-gram LM containing 1.25 million n-grams,
including 164,000 unigrams. Personalized user history, con-
tacts, and email n-gram models augment the primary LM.

Mobile keyboard models are constrained in multiple
ways. In order to run on both low and high-end devices,
models should be small and inference-time latency should
be low. Users typically expect a visible keyboard response

ar
X

iv
:1

81
1.

03
60

4v
2

 [c
s.C

L]
 2

8
Fe

b
20

19

Integration af kommunikation og edge computing
Federated learning over kommunikationskanal

• Kan vi udnytte det trådløse medie
til effektivt at aggregere
modeller?

• I teorien meget effektivt

• Kræver nøjagtig synkronisering

4

Linear Analog
Modulator

+

 Channel Pre-
compensation

Signal A
Waveform A

Device A

Demodulator

Access Point

Linear Analog
Modulator

+

 Channel Pre-
compensation

Signal B
Waveform B

Device B +

Ideal Aggregated Signal

Superimposed Waveform

Aggregated Signal

with Channel Noise

Aggregated Signal

with Channel Estimation Error

Figure 2. Illustration of basic principle for AirComp.

With appropriate data pre/post-processing, the capability of AirComp can go beyond averaging

to compute a class of so-called nomographic functions, which can generally be expressed

as a post-processed summation of multiple pre-processed data-values (see [5] for the precise

mathematical definition). Typical functions in this class include arithmetic mean, weighted sum,

geometric mean, polynomial, and Euclidean norm. For example, to compute the geometric

mean, the pre-processing is a logarithm function and post-processing an exponential function as

presented in [5]. Interestingly, it has been proven in [6] that any function can be decomposed

as a summation form of nomographic functions, indicating that any function can be computed

via AirComp in general.

Strict time synchronization in devices’ transmissions poses a key challenge for AirComp

implementation, but can be overcome using the rich set of existing synchronization techniques.

For instance, uplink synchronization in 4G Long Term Evolution (LTE) systems relies of a so-

called “timing advance” mechanism, which can be used to facilitate the AirComp in practice.

Specifically, each device estimates the propagation delay and then transmits ahead of time (with

a negative time offset equal to the delay) so that the signal always arrives at the base station

Zhu, Guangxu, et al. "Over-the-air computing for wireless data aggregation in massive IoT." IEEE Wireless Communications 28.4 (2021): 57-65.

Integration af kommunikation og edge computing
Statistisk inferens over kommunikationskanal

• Traditionelt er
kommunikationssystemer
designet som en “bit-pibe”

• Hvad hvis vi ikke ved, hvad
modtageren skal bruge, for at
kunne dekode billedet?

• Hvad hvis vi har mulighed for
feedback?

Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges 0:3

availability is fundamental for replicability/reproducibility [30]2, we provide for each work its
corresponding code repository, if available, so that interested readers can reproduce and learn from
existing studies;

•We conclude the paper by discussing in Section 6 a compelling agenda of research challenges
in SC and EE, hoping to spur further contributions in these exciting and timely �elds.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS
In this section, we provide an overview of local, edge, split computing and early-exit models, which
are the main computational paradigms that will be discussed in the paper. Figure 1 provides a
graphical overview of the approaches.

Mobile Device

Computing Capacity

(a
)

Lo
ca

l C
o

m
p

u
ti

n
g

(b
)

Ed
ge

 C
o

m
p

u
ti

n
g

(c
)

Sp
lit

 C
o

m
p

u
ti

n
g

Edge Server

Computing Capacity

Prediction: “Rabbit”

Prediction: “Rabbit”

Sensor data

Intermediate output

Wireless Communication

Prediction: “Rabbit”

C
om

pr
es
so
r

D
ec
om

pr
es
so
r

(d
)

Ea
rl

y
Ex

it
in

g
Prediction: “Rabbit”

Intermediate output

Fig. 1. Overview of (a) local, (b) edge, (c) split computing, and (d) early exiting: image classification as an
example.

All these techniques operate on a DNNmodelM(·) whose task is to produce the inference output
y from an input x. Typically, x is a high-dimensional variable, whereas the output y has signi�cantly
lower dimensionality [125]. Split computing and early exit approaches are contextualized in a
setting where the system is composed of a mobile device and an edge server interconnected via a
wireless channel. The overall goal of the system is to produce the inference output y from the input
x acquired by the mobile device, by means of the DNN y=M(x) under – possibly time varying –
constraints on:

2To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP)
adopt a reproducibility checklist as part of o�cial review process such as ML Code Completeness Checklist. See https:
//github.com/paperswithcode/releasing-research-code.

Feedback

Opsummering

• Der er mange fordele ved at flytte skyen nærmere
enheden

• Hvordan laver vi opgavefordeling mellem
enheden og skyen/skyerne?

• Udviklingen er i fuld gang, særligt inden for ML/AI

• Integrationen mellem edge computing og
kommunikation åbner nye muligheder

