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OUTLINE

Motivation: why bridging communication with computing?

How to bridge communication with computing?
* Joint compression and encryption
« Compressive sensing-based data encryption
* Joint compression and analytics
» Analytics over GD compressed data

Conclusion and outlook
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MOTIVATION

| Enable a sustainable growth in loT through a holistic design: Joint communication with computing
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JOINT COMMUNICATION AND COMPUTING
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JOINT COMMUNICATION AND COMPUTING
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Compression
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JOINT COMPRESSION AND ENCRYPTION

Original dat% Compressed data

1 . .
Compr.essmn Encryptlon FEC encoder
| algorithm algorithm
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Error recovery channel

Data compression Information secrecy

Recovered data

Decompressi == Decryption
on algorithm algorithm
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/ AARHUS DEIC QI ZHANG
v EJE,;lAl\R/TEENS'I'r(l;Z ELECTRICAL AND COMPUTER 26 OCTOBER 2022 e T ESSOR
ENGINEERING QZ@ECE.AU.DK

QENTIN,

R
@
$
E A

TAS AR

L)
O

)
“Wissian®

ANN-S07

N



COMPRESSIVE SENSING AND ENCRYPTION

Input signal: x € RN Information secrecy
Sensing matrix: ® € RM*N M < N * Plaintex: x
Measurement vector: y=dx « Ciphertext: y
y = dx @ x « (Gaussian one-time sensing
| AN NEE =
EREEEEEEEN |
H_ HSEEEE'EE EEN 'EEEEE = / \
= - - n Computational secrecy
e B -
: Yi = ®Pix;
= < /
- N
B i Perfect secrecy \‘

_ _ Mutual information:
Requirements for signal recovery 1(x,¥:) = 1(Ex, Ey,)

« Signal sparsity

. Design of the sensing matrix kExi is enerqgy of x; and E),. is energy of y;.
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ENERGY CONCEALMENT ENCRYPTION SCHEME

Objective: To tackle the weaknesses of the state-of-the-art CS-based encryption systems

» CS ciphertext leaks energy

* Plaintext are correlated
Fordata x = [x1, Xo,..,xy_1]7, construct an energy concealment x£¢ = [c,x1, x5, ..., xy—_1]"
Using Compressive Sensing to compress data x£¢ € RN to y£¢ € RM, with CR = M/N

T T T T e —— 1 T T T T T T T I
: Key, IV : Key, IV '
[
[ [ [
] I
! ® ! ¢ :
| Concatenation yEC R Optimization | Removal of ~
X == . > > P 5 - . J_,x
' of EC variable ,EC I algorithm |zEc EC variable |
[ . [ S x I
1 Joint compression and encryption | I Joint decompression and decryption I

G. Kuldeep and Q. Zhang, “Design Prototype and Security Analysis of a Lightweight Joint Compression and Encryption Scheme for
Resource-Constrained loT Devices," in IEEE Internet of Things Journal, 2022.

/ AARHUS DEIC QI ZHANG
¥ UNIVERSITY 26 OCTOBER2022 | ASSOCIATE PROFESSOR

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING QZ@ECE.AU.DK




EC: PERFORMANCE EVALUATION
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MULTI-CLASS PRIVACY PERSEVERING CLOUD
COMPUTING (MPCC)

Objectives:

«  Multi-class encryption

* Privacy preserving computation intensive signal recovery at cloud
« Joint compression and information secrecy

MPCC applications:

« Statistical decryption

: . Master Key (P, I
« Data anonymization y (P, 1)

oT (rOPx)
oT sensor Ciphertext e Plaintext
- P~ (r"OrOPx
_ 1® _ Storage + _— ( ( ))
Plaintext ¢S encoding _CiPhertext ‘cs pecompression ® _ ,
(Encryption) @ (r ©OPXx) (I’QP\X)’ F 10 (rOPXY) Plaintext
Sensingtmatrix P Ciphertext Stati T Ik
Master Key ( Permutation key P, tatistical key r
Statistical key r) (
rOPx) . . . :
Ciphertext Ciphertext-only Retrieved info

Attack Adversary

G. Kuldeep and Q. Zhang, “Multi-class Privacy-preserving Cloud Computing based on Compressive Sensing for loT," Elsevier

Journal of Information Security and Applications, 2022.
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MPCC: STATISTICAL DECRYPTION-1

Access point: joint compression and

Orginal signal at loT device
T T
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MPCC: STATISTICAL DECRYPTION-2
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MPCC: DATA ANONYMIZATION

loT device: joint compression and encryption of images
Cloud: storage and decompression
Superuser:. complete image

Semi-authorized user: non-sensitive part of the image

Sensitive region

Reconstructed image at the cloud At semi-authorized user At super-user
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JOINT COMMUNICATION AND COMPUTING

Compression

‘\?gﬂT INp,

S (o)
AARHUS DEIC QI ZHANG : @
/\I UNIVERSITY 26 OCTOBER 2022 k

R S
DEPARTMENT OF ELECTRICAL AND COMPUTER ASSOCIATE PROFESSOR TEERS
ENGINEERING QZ@ECE.AU.DK

ANN-S07 1,
&
Sts 1N

N\
42



IOT FRAMEWORK FOR DATA ACQUISITION, TRANSMISSION,
STORE, AND ANALYTICS
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Data Transmit Data Data Data Parse Data Analytics
and Store Compression Decompression

size
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Data Compression Rae Tg[g?;nlt ane Data Analytics
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FOR IOT DATA ACQUISITION, TRANSMISSION, STORE, AND
ANALYTICS

Goal: to create a sustainable loT solution through a holistic, end-to-end framework to
address the challenges,

« Minimize loT data traffic and storage;

« Save energy in loT devices, communication and storage infrastructure, as well as in
computing;

« Accelerate data analysis, striking a balance between accuracy and efficiency;

Solution:
* New lossless data compression algorithm, Generalized Deduplication, enables
* random data access;
* direct data analytics;
» and could provide an opportunity for privacy-preserving analytics.
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GENERALIZED DEDUPLICATION
TITCHY: TIME-SERIES COMPRESSION WITH RANDOM ACCESS

« Data Compression at resource-constrained loT devices

* Torealize end-to-end compression, with good overall Sempgegion
performance in :

« Compression ratio

* Encoding speed

* Decoding speed

« Small chunk performance
 Random access capability

- R. Vestergaard, D. E. Lucani Rétter; Q. Zhang. ARandomly Accessible Lossless Compression Scheme for Time-Series Data. IEEE
INFOCOM 2020.s. 2145-215A4.
- R. Vestergaard, Q. Zhang, M. Sipos, D. E. Lucani Rétter, “Titchy: Online Time-series Compression with Random Access for the

Internet of Things”, IEEE Internet of Things Journal, 05.2021.
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COMPRESSION RATIO VS. BLOCK SIZE & MEMORY USAGE
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RANDOM ACCESS COST
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! Can we perform data query processing and
analytics directly on the GD compressed data?
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\/—
The bases act like a

summary of the data.

DEIC Ql ZHANG

26 OCTOBER 2022 ASSOCIATE PROFESSOR
QZ@ECE.AU.DK

Deviations

101011710170171010107100100101
010100101010010101010100100
101011011711111070070111001...




A JOINT COMMUNICATION AND COMPUTING IOT FRAMEWORK

(A) Qa__.____} i

Generalized Data
Compressed data
Deduplication = Compressec;l d.GtG o Analytics
(Bases + Deviations)

Cloud

Deviations BN Compressed data

(Deviations)

Generalized
Deduplication

Bases

Data
Analytics

Compressed H——
data (Bases) .
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CLUSTERING ON GD COMPRESSED DATA

/v

Comp. Configs

Dataset Group Description # Datasets n d k  Mean Size Type
(kB) Total Mean
A-sets [40] Varied k 3 3,000-7,500 2 20-50 42.1 int 24 8
E Birch [40] Varied structure 2 100,000 2 100 800.1 int 21 11
E DIM (low) [40], [41] Varied d 14 1,351-10,126  2-15 9 239.1 int 292 21
; G2 [40] Varied d & overlap 60 2,048 2-64 2 172.2 int 924 16
3; S-sets [40] Varied overlap 4 5,000 2 15 40.1 int 32 8
Gaussian [28] Well-defined clusters 10 100,000 2 5 800.1 float 100 10
Gas turbine [42] Hourly emissions | 36,733 11 5 1,616.4 float 22 22
Power consumption [43]  Single household 5 10,000-400,000 7 4 4,213.2 float 35 7
j HTRU2 [44] Pulsar emissions 1 17,898 8 5 572.9 float 10 10
§ Mammography [45] Calcification scans 11,183 6 6 268.5 float 10 10
SMTP [45] Network attack attempts 1 95,156 3 5 1,142.0 float 10 10
Thyroid [45] Patient data 1 3,772 6 90.7 float 10 10
Total 103 1,490 14.5
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A. Hurst, D. E. Lucani, I. Assent and Q. Zhang, “GLEAN: Generalized Deduplication Enabled Approximate Edge Analytics”, IEEE

Internet of Things Journal, 2022
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DATA CLUSTERING QUALITY ON COMPRESSED DATA WITH
DIFFERENT GD CONFIGURATIONS

Only access the bases of GD compressed data

Approximation Ratio = sum of squared errors (basis) /sum of squared errors (x)

A-sets D" —
Birch 4 | — ¢
DIM (l(’)\&»’) - ———10 WD OMNG & W 40 % 46 L 2K

G2 - :D—mmo 1000 e
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HTRU24 ([]

Household Power I-I]-I
+
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Thyroid |||]'|0
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1 10 100
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OPTIMIZE GD TO IMPROVE CLUSTERING QUALITY

Optimizing GD
* Design a heuristic approach
* Improve data clustering quality at the expense of compression ratio

o
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Analytics-tailored GD (GD-A)

Compression ratio and Analytics data ratio
* GD vs. SoTA universal data compressors  ¢p.p (cr

Analytics-tailored GD (GD-A)
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ANALYTICS DATA RATIO AND COMRESSION RATIO
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RUNTIME COMPARISON
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GREEDYGD

Dataset Precision n d Size (kB)
Aarhus weather [19] single 26,387 4 422
Aarhus pollution #172156 [21] single 17,568 5

Aarhus pollution #204273 [21] single 17,568 5 351
Chicago beach water [22] single 39,829 5 797
Chicago beach water (w/depth) [22] single 10,034 6 241
Chicago beach weather (float) [23] single 86,694 9 3,121
Chicago beach weather (integer) [23]  single 86,763 5 1,735
Chicago taxi trips [24] double 3,466,498 10 277,320
CMU IMU (accelerometer) [25] single 134,435 3 1,613
CMU IMU (angular velocity) [25] single 134,435 3 1,613
CMU IMU (magnetometer) [25] single 134,435 3 1,613
CMU IMU (position) [25] single 134,435 4 2,151
CMU IMU (all) [25] single 134,435 13 6,991
COMBED Mains power [26] double 82,888 3 995
COMBED UPS power [26] double 86,199 3 1,035
Melbourne city environment [27] single 56,570 3 679
Gas turbine emissions [28] single 36,733 11 1,616
Household power consumption [29] single 2,049,280 7 57,380
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APPROXIMATE QUERY PROCESSING

Compute additional metadata to support Query median percentage error
analytics: multi-dimensional histograms (MEAN queries)

Query aggregated on column...

oo L c
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CONCLUSION AND OUTLOOK

= |oT has many challenges but also opportunities.

»  Asustainable loT system requires a holistic design in data- acquisition, compression,
encryption, communication, storage and analytics.

» To bridge Communication with Computing

=  Opportunities

= Time-critical loT applications also needs joint design of communication and
computing

= |tis worth looking into privacy-preserving analytics on compressed data
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