\

"’ eBPF: Safely observe and
extend your operating system

Toke Hailand-Jergensen

Principal Kernel Engineer, Red Hat

DeiC conference
October 26th, 2022

Q Red Hat eBPF: Safely observe and extend your operating system

What is eBPF ? P

From: https://ebpf.io/what-is-ebpf

eBPF is a revolutionary technology that can run sandboxed programs
in the Linux kernel without changing kernel source code or loading a

kernel module

Rate of innovation at the operating system level:

e eBPF enables things at the OS level that were not possible before
e eBPF can radically increase rate of innovation

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

https://ebpf.io/what-is-ebpf
mailto:toke@redhat.com

Traditional Kernel development process

Application Developer: Hey kernel developer! Please add OK! Just give me a year to convince
this new feature to the Linux the entire community that this is

: . kernel good for everyone.

1 want this new feature

to observe my app ‘ % ’
. 3

1year later... 5 year later...

But 1 need this in
my Linux distro Good news. Our Linux OK but my requirements

I'm done. The upstream distribution now ships a have changed since...
kernel now supports this. 5 kernel with your required

> feature

RedHat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jergensen <toke@redhat.com>

mailto:toke@redhat.com

eBPF development process

Application Developer: eBPF Developer:

i want this mew feature OK! The kermnel can't do this so let
to observe my app me quickly solve this with eBPF.

L

A couple of days later.._.

Here is a release of cour eBPF project that has this feature
now. BTW, you don't have to reboot your machine.

RedHat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jergensen <toke@redhat.com>

mailto:toke@redhat.com

eBPF components

Closer look at the eBPF components:

e Bytecode - Architecture independent Instruction Set

= JIT to native machine instructions (after loading into kernel)
e Runtime environment - Linux kernel

s Event based BPF hooks all over the kernel

m Per hook limited access to kernel functions via BPF helpers
o by the eBPF verifier

m | imits and verifies memory access and instructions limit

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

mailto:toke@redhat.com

eBPF application areas

RedHat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

mailto:toke@redhat.com

eBPF use cases

e Networking
m Use eBPF to amend the data path with new features
m CPU efficiency: Use XDP to keep up with high packet rates
o Accelerate firewall, load balancing, forwarding
e Monitoring
= | ow overhead performance monitoring
m Application resource usage reporting

m Firewalling and DDoS protection
= Application isolation
m Custom security monitoring and enforcement

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

mailto:toke@redhat.com

eBPF networking

Focus on eBPF for networking

e XDP (eXpress Data Path) for fast processing at ingress
e [C-BPF hooks inside the regular stack

e eBPF hooks for cgroups can also be useful for containers

Red Hat eBPF: Safely observe and extend your operating system

- Toke Hgiland-Jergensen <toke@redhat.com>

mailto:toke@redhat.com

What is XDP?

XDP (eXpress Data Path) is a Linux in-kernel fast path

e Programmable layer in front of traditional network stack
= Read, modify, drop, redirect or pass
m For L2-L3 use cases: seeing x10 performance improvements!
e Avoiding memory allocations
= No SKB allocations and no init (SKB zeroes 4 cache-lines per pkt)
e Adaptive bulk processing of frames
e \ery early access to frame (in driver code after DMA sync)
e Ability to (large parts) of kernel
= Evolve XDP via BPF helpers

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

mailto:toke@redhat.com

XDP performance

RX-drop (in Mpps): XDP vs. iptables

iptables-raw
iptables-filter
conntrack
standard-firewalld
XDP_DROP

XDP_DROP: 100Gbit/s mIx5 max out at (CPU E5-1650v4 @3.60GHz)

o - NIC compress RX-descriptors (rx cge compress on)

RedHat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jergensen <toke@redhat.com>

10

mailto:toke@redhat.com

eBPF networking use cases

e DDOS filtering
e Custom software RSS steering
e Passive latency monitoring

e NAT64 gateway

Red Hat

eBPF: Safely observe and extend your operating system -

Toke Hoiland-Jgrgensen <toke@redhat.com>

1

mailto:toke@redhat.com

DDOS filtering

Use case: Filtering DDoS attack traffic at line rate on servers instead of on a
dedicated firewall.

: The kernel firewall (iptables/netfilter) doesn't scale to high line rates
(10-100Gbps)

Solution: Implement the filtering in XDP, allowing it to scale to line rate with low
overhead.

https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

12

https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
mailto:toke@redhat.com

Custom software RSS steering

Use case: ISP middlebox providing per-customer bandwidth enforcement (using
kernel queueing infrastructure)

: Software shaping doesn’t scale because of global gdisc lock

Solution: XDP can choose which CPU to start the Linux networking stack on -

steer a subset of customers to each CPU, so CPUs can run independently
(avoiding the lock contention)

https://github.com/xdp-project/xdp-cpumap-tc

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

13

https://github.com/xdp-project/xdp-cpumap-tc
mailto:toke@redhat.com

Passive latency monitoring

Use case: Monitor TCP traffic and extract flow latency (using TCP timestamps) to
passively monitor traffic flowing through a middlebox.

: The existing solution in software (pping) doesn't scale to high
bandwidths

Solution: eBPF can inspect every packet with very low overhead - implement the
monitoring in the kernel with eBPF, only export metrics to userspace

https://github.com/xdp-project/bpf-examples/tree/master/pping

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

14

https://github.com/pollere/pping
https://github.com/xdp-project/bpf-examples/tree/master/pping
mailto:toke@redhat.com

NAT64 gateway

Use case: NAT64 gateway for IPv4-IPv6 transition

. Existing open source implementation (Tayga) routes packets through
user space, causing bad performance and bufferbloat.

Solution: Implement the translation inband in the kernel path using eBPF - adding
a new feature to the networking stack without changing kernel code

https://github.com/xdp-project/bpft-examples/tree/master/nat64-bpt

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

15

http://www.litech.org/tayga/
https://github.com/xdp-project/bpf-examples/tree/master/nat64-bpf
mailto:toke@redhat.com

eBPF and Red Hat

We support eBPF on RHEL.:

e Full kernel eBPF backports (RHEL 8.7: kernel 514, RHEL 9.1. kernel 5.16)
e Support for eBPF kernel features, bcc-tools and bpftrace

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/9.0_release_notes/new-features#BZ-2070506

We develop eBPF:

e Upstream kernel contributions (networking, tracing, HID)
e Userspace libraries and tools (libxdp, Aya)
e Code examples and docs (xdp-tutorial, bpf-examples)

We are a

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

[S

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/9.0_release_notes/new-features#BZ-2070506
https://github.com/xdp-project/xdp-tools/tree/master/lib/libxdp
https://aya-rs.dev/
https://github.com/xdp-project/xdp-tutorial
https://github.com/xdp-project/bpf-examples
mailto:toke@redhat.com

Closing remarks

eBPF allows unprecedented visibility into the OS, and safe, dynamic extensibility
of core OS features.

eBPF unlocks the kernel’s potential for innovation

e Pioneered on Linux, but exists in Windows too:
https://github.com/microsoft/ebpf-for-windows

e The eBPF Foundation (working on standardisation): https://ebpf.foundation/

e More examples of applications using eBPF: https://ebpf.io/applications

e Code examples: https://github.com/xdp-project/bpf-examples

e XDP tutorial: https://github.com/xdp-project/xdp-tutorial

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

https://github.com/microsoft/ebpf-for-windows
https://ebpf.foundation/
https://ebpf.io/applications
https://github.com/xdp-project/bpf-examples
https://github.com/xdp-project/xdp-tutorial
mailto:toke@redhat.com

End: Questions?

Or come find me in the Red Hat booth during the conference!

Red Hat eBPF: Safely observe and extend your operating system - Toke Hgiland-Jargensen <toke@redhat.com>

18

mailto:toke@redhat.com

