
Proof-of-concept Quantum Use Case
Optimization

In the current NISQ (noisy intermediate-scale quantum) era, the most feasible and promising use
cases for quantum computing are optimization, simulation, and machine learning.

Optimization
From minimizing risk to
maximizing throughput,
optimization problems are
ubiquitous across many
industries, especially in finance,
logistics, and engineering.

Simulation
Simulating quantum systems is
a notoriously difficult but
powerful tool for solving
problems in chemistry, physics,
material science, and the
pharmaceutical industry.

Machine Learning
From anomaly detection and
classification problems to
generating text and images,
machine learning has found
countless applications touching
almost every sector of society.

To tackle problems in these areas, most NISQ algorithms take a hybrid approach by using classical
optimization techniques to tune the parameters of variational quantum circuits. In this proof-of-concept use
case, we will consider an optimization problem in logistics and then walk through, step by step, a
variational quantum algorithm which solves the problem.

This proof-of-concept use case is part of a series produced by DeiC’s Quantum Department as part of the
Q-Access initiative to make quantum use-case development more accessible to Danish academia and
industry. You can find the proof-of-concept use cases for simulation and machine learning at https://
www.deic.dk/q-access. We will assume a basic familiarity with the quantum circuit model of quantum
computing, but we will also try to give as many details as possible.

Problem: Optimizing Last-Mile Routes for a Delivery Company
Suppose that there are two delivery drivers who need to cover six delivery zones labeled 𝐴, 𝐵, 𝐶 , 𝐷, 𝐸,
and 𝐹 . For each pair of zones, there is some cost to both of these zones being placed on the same route, e.g.
long distance between the zones, high chance of zig-zagging if one driver serves both zones, delivery time-
window conflicts between the zones, etc.

Goal: Assign each zone to one of two routes in such a way that separates pairs that “don’t play nicely.”

This problem can be formulated as a max-cut problem for the graph whose vertices are labeled by the set
of zones 𝒵 = {𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹} and whose edges are weighted by the costs. To separate the pairs that
don’t play nicely we want to consider a cut, which is a subset of the edges that once removed separates the
vertices into two groups. Moreover, we want to find a cut that maximizes the sum of the cost of the edges
in the cut. Below is an example cut that might seem reasonable, separating the zones into a route
consisting of {𝐴,𝐵,𝐸} and a route consisting of {𝐶,𝐷, 𝐹}.

𝐴
𝐵

𝐶

𝐷

𝐸 𝐹 (1)

Max-cut problems like this can be solved using a variational quantum algorithm called QAOA (quantum
approximate optimization algorithm) introduced in [1] and [2]. In fact, QAOA is quite general and can

1

https://www.deic.dk/q-access
https://www.deic.dk/q-access

be used to solve a wide variety of combinatorial optimization problems, ranging from portfolio
optimization in finance to community detection in social networks.

Precise Formulation of Our Problem
For each of the delivery zones 𝐴, 𝐵, 𝐶 , 𝐷, 𝐸, and 𝐹 , we first need to know the cost of placing each pair of
zones in the same route. We will denote the cost of placing zones 𝐴 and 𝐵 in the same route by 𝑐𝐴𝐵 and so
on. The cost of place 𝐴 and 𝐵 being on the same route does not depend on the order, so we have 𝑐𝐴𝐵 =
𝑐𝐵𝐴. Now, suppose that we are given the following costs.

𝑐𝐴𝐵 = 17 𝑐𝐴𝐶 = 30 𝑐𝐴𝐷 = 10 𝑐𝐴𝐸 = 6 𝑐𝐴𝐹 = 31

𝑐𝐵𝐶 = 10 𝑐𝐵𝐷 = 18 𝑐𝐵𝐸 = 41 𝑐𝐵𝐹 = 12

𝑐𝐶𝐷 = 9 𝑐𝐶𝐸 = 20 𝑐𝐶𝐹 = 7

𝑐𝐷𝐸 = 12 𝑐𝐷𝐹 = 8

𝑐𝐸𝐹 = 15

(2)

Then, we can define a cut in terms of the vertices that it cuts out, which is equivalent to a choosing 0 or 1
for each vertex, where 0 means it is out of the cut and 1 means it is in the cut. So, a cut can be fully
described by 6 numbers, which we will denote by

𝒙 = (𝑥𝐴, 𝑥𝐵, 𝑥𝐶 , 𝑥𝐷, 𝑥𝐸, 𝑥𝐹). (3)

For example, the cut depicted above would be given by

𝒙 = (0, 0, 1, 1, 0, 1) (4)

(or equivalently 𝒙 = (1, 1, 0, 0, 1, 0)). Now, if 𝑥𝐴 = 1 and 𝑥𝐵 = 0 or vice versa, then 𝐴 and 𝐵 are in
different routes, and we should include 𝑐AB in the cost of the cut. Therefore, we need an expression that is
1 when 𝑥𝐴 ≠ 𝑥𝐵 and 0 when 𝑥𝐴 = 𝑥𝐵, which is given below.

2𝑥𝐴𝑥𝐵 − 𝑥𝐴 − 𝑥𝐵 (5)

Using this, we will define the total cost of the cut to be

𝐶(𝒙) = −1
2
∑
𝐼,𝐽∈𝒵

𝑐𝐼𝐽 ⋅ (2𝑥𝐼𝑥𝐽 − 𝑥𝐼 − 𝑥𝐽). (6)

We will see soon the reason for choosing a negative sign, but the 12 is to undo double counting. Now,
looking back at Figure (1) above, if we fill in 0 and 1 corresponding to the the cut, we can also see exactly
which edges contribute to the cost.

0
0

1

1

0 1 (7)

For this particular cut, we find that

𝐶(𝒙) = −(𝑐𝐴𝐶 + 𝑐𝐴𝐷 + 𝑐𝐴𝐹 + 𝑐𝐵𝐶 + 𝑐𝐵𝐷 + 𝑐𝐵𝐹 + 𝑐𝐸𝐶 + 𝑐𝐸𝐷 + 𝑐𝐸𝐹) = −158 (8)

2

but there may be better cuts. Our goal then becomes to find the cut 𝒙 with the minimum cost, i.e.

argmin
𝒙

𝐶(𝒙). (9)

Expressing our optimization problem in terms of finding a minimum will allow us to put it into the
framework of quantum annealing, but first we need to embed our problem into a quantum system.

Embedding Our Problem in a Quantum System
Embedding cuts of a graph as the states of a quantum system is rather straightforward, since we defined
the cuts in terms of terms of 0’s and 1’s. Each zone will have an associated qubit, and the state
corresponding to a cut will be given by

|𝒙⟩ ≔ |𝑥𝐴⟩ ⊗ |𝑥𝐵⟩ ⊗ |𝑥𝐶⟩ ⊗ |𝑥𝐷⟩ ⊗ |𝑥𝐸⟩ ⊗ |𝑥𝐹 ⟩. (10)

For the cut from Figures (1) and (7), the corresponding quantum state is

|𝒙⟩ ≔ |0⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩ (11)

which can write more compactly as |𝒙⟩ = |001101⟩. Moreover, for clarity we will occasionally represent a
state corresponding to a cut by using a graph similar to the one from Figure (7), as shown below.

|001101⟩ = (12)

Next, the cost function can be encoded in a Hamiltonian, which we will discuss in more detail in the
following section. For now, let us just see how it works in our problem. To translate the cost function from
Equation (6), we will use the 𝑍-gate, which is a 1-qubit gate defined by its action on the basis states |0⟩ and
|1⟩ as follows.

𝑍|0⟩ = |0⟩
𝑍|1⟩ = −|1⟩

(13)

Using two 𝑍-gates. we can reconstruct the cost function as

1
2
(id2 − 𝑍𝐼 ⊗ 𝑍𝐽)|𝑥𝐼⟩ ⊗ |𝑥𝐽⟩ (14)

where 𝐼 is the identity, since

1
2
(id2 − 𝑍𝐼 ⊗ 𝑍𝐽)|0⟩ ⊗ |0⟩ = 0

1
2
(id2 − 𝑍𝐼 ⊗ 𝑍𝐽)|1⟩ ⊗ |0⟩ = |1⟩ ⊗ |0⟩

1
2
(id2 − 𝑍𝐼 ⊗ 𝑍𝐽)|0⟩ ⊗ |1⟩ = |0⟩ ⊗ |1⟩

1
2
(id2 − 𝑍𝐼 ⊗ 𝑍𝐽)|1⟩ ⊗ |1⟩ = 0

(15)

(which can be seen by changing variables to 𝑧𝐼 = 2𝑥𝐼 − 1, mapping 0 ↦ −1 and 1 ↦ 1). Thus, our cost
function from Equation (6), becomes

𝐻𝐶 = −1
2
∑
𝐼,𝐽∈𝒵

𝑐𝐼𝐽 ⋅ (id2 − 𝑍𝐼 ⊗ 𝑍𝐽). (16)

For the cut 𝒙 from Figures (1) and (7), whose state is given by Equation (11), we find that

𝐻𝐶 |𝒙⟩ = 𝐻𝐶 |001101⟩ = −158 ⋅ |001101⟩ (17)

3

which aligns with cost from Equation (8)!

Warning: Equation (16) is not a normalized quantum state, so it is not a problem that | − 158| > 1 as it
does not represent a probability. In fact, after being normalized, the state would just be |001101⟩ with
probability 1. Moreover, 𝐻𝐶 is not a unitary operator but a Hermitian operator. For now, what is important
is that it properly encodes the cost function, and we will see in the subsequent sections how 𝐻𝐶 is related
to a unitary operator that will help us solve our problem.

Motivation from Quantum Annealing
The aim of this section is to provide a motivation for QAOA, but it this is impossible to do without
introducing a certain level of formalism, so we have tried to make this section self-contained.

A Hamiltonian 𝐻 in quantum mechanics is an operator that represents the total energy of a system.
From a “spectral decomposition” of the Hamiltonian, one can find the possible energy levels of the system,
which will be a finite set {𝐸0, 𝐸1, 𝐸2,…,𝐸𝑛} typically ordered from smallest to largest. The ground state
|Ψ0⟩ of a quantum system is the lowest energy state, which will have energy 𝐸0 and satisfy

𝐻|Ψ0⟩ = 𝐸0|Ψ0⟩. (18)

The excited states {|Ψ1⟩, |Ψ2⟩,…, |Ψ𝑛⟩} are the states with energy greater than the ground state, and they
satisfy 𝐻|Ψ𝑖⟩ = 𝐸𝑖|Ψ𝑖⟩. Looking back at Equation (17), in this new language, we would say that the state
|001101⟩ has energy −158, but it is not clear if this is a ground state or an excited state.

In general the Hamiltonian might depend on time, in which case we would write 𝐻(𝑡). Then, at each
instant in time, there is an instantaneous ground state and instantaneous excited states. As time
progresses, quantum systems will tend to stay in the ground state, if evolved slowly enough and in such a
way that does not introduce enough energy into the system to transition it to an excited state. In this case,
we say that system is evolving adiabatically.

The problem of determining ground states is a very computationally difficult problem in general, and
quantum annealing is a specialized quantum algorithm that takes advantage of adiabatic evolution to
find these ground states starting from an easy-to-construct ground state (under some conditions¹).

Outline of Quantum Annealing
Goal: Prepare the ground state |Ψtarget

0 ⟩ of a given Hamiltonian 𝐻target.

Strategy
1. Initialize the system in an easy-to-construct ground state |Ψinitial

0 ⟩ of a Hamiltonian 𝐻initial.
2. Evolve the system according to the time-dependent Hamiltonian

𝐻(𝑡) = (1 − 𝑡) ⋅ 𝐻initial + 𝑡 ⋅ 𝐻target (19)

from time 𝑡 = 0 to time 𝑡 = 1 slowly enough that the system evolves adiabatically.
3. The system will now be in the ground state |Ψtarget

0 ⟩ of 𝐻(1) = 𝐻target as desired.

This leaves two big questions unanswered. How do we evolve a system adiabatically according to a given
time-dependent Hamiltonian and how can we implement this on a gate-based quantum computer? Let us
tackle the first question, because it should shed some light on the second question, and hopefully make the
path towards developing QAOA feel more natural.

For a time-independent Hamiltonian, solving Schrödinger’s equation gives a unitary operator that evolves
the system, which is given by

¹There must be a gap between the ground state and the lowest energy excited state throughout the evolution of the system.
Moreover, “slowly” in this context is defined in terms of this gap and the uncertainty principle to ensure that the gap is never
crossed.

4

𝑈(𝑡) = exp(−𝑖𝑡𝐻). (20)

If the Hamiltonian is given by one of the Puali operators, i.e the 𝑋-gate, 𝑌 -gate, and 𝑍-gate, then this
unitary evolution operator is a rotation of the Bloch sphere around the 𝑥-axis, 𝑦-axis, and 𝑧-axis,
respectively.

exp(−𝑖𝑡𝑋) = 𝑅𝑋(2𝑡)
exp(−𝑖𝑡𝑌) = 𝑅𝑌 (2𝑡)
exp(−𝑖𝑡𝑍) = 𝑅𝑍(2𝑡)

(21)

Moreover, these rotation operators are in the native gate set of a number of quantum computing platforms,
so implementing the evolution of Hamiltonians built out of Pauli operators is often quite feasible. Now,
returning to our problem, finding the ground state of the cost Hamiltonian 𝐻𝐶 from Equation (16) is
equivalent to finding the ground state of

𝐻̃𝐶 = 1
2
∑
𝐼,𝐽∈𝒵

𝑐𝐼𝐽 ⋅ 𝑍𝐼 ⊗ 𝑍𝐽 . (22)

obtained by dropping the constant terms. Indeed, these constant terms would just introduce a global phase
in the unitary evolution operator, which we can ignore. For this modified Hamiltonian 𝐻̃𝐶 , the unitary
evolution operator is given by

𝑈̃𝐶(𝑡) = ∑
𝐼,𝐽∈𝒵

𝑅𝑍𝐼𝑍𝐽
(𝑐𝐼𝐽 ⋅ 𝑡). (23)

Note that 𝑅𝑍𝑍(𝑡) ≠ 𝑅𝑍(𝑡) ⊗ 𝑅𝑍(𝑡), but instead 𝑅𝑍𝑍(𝑡) = 𝑅𝑍(𝑡) ⊕ 𝑅𝑍(−𝑡). However, the 𝑅𝑍𝑍 gate is
still a native gate for a number of quantum computing platforms and otherwise can be implemented with
two 𝐶𝑁𝑂𝑇 gates and a single 𝑅𝑍 gate.

Unfortunately, the precise description of the unitary evolution operator for a time-dependent Hamiltonian
is not so simple, but we can employ a discretization procedure called Trotterization. For our problem, the
time-dependent Hamiltonian is

𝐻(𝑡) = (1 − 𝑡) ⋅ 𝐻initial + 𝑡 ⋅ 𝐻𝐶 . (24)

Now in order to discretize, we first need to divide our time interval from 𝑡 = 0 to 𝑡 = 1 into 𝑁 intervals of
length 1𝑁 . The endpoints of these time intervals are given by

𝑡0 = 0, 𝑡1 =
1
𝑁
, 𝑡2 =

2
𝑁
,…, 𝑡𝑁 = 1. (25)

The difficulty arises because in general 𝐻initial will not “commute” with 𝐻target, or in this case 𝐻𝐶 , which
means that the order we apply them matters. Taking into account this time-ordering at each step is
necessary to approximate the correct unitary evolution. The ansatz considered in QAOA, is inspired by the
“first-order” Trotterization of the unitary evolution operator, which in this case is given by

𝑈(1) ≈∏
𝑁

𝑖=𝑘
exp(−𝑖(1 − 𝑡𝑘)𝐻initial) exp(−𝑖𝑡𝑘𝐻𝐶) =∏

𝑁

𝑖=𝑘
𝑈initial(1 − 𝑡𝑘)𝑈𝐶(𝑡𝑘). (26)

In each interval, this approximation applies both Hamiltonians alternatingly to approximate the evolution
of the fully time-dependent Hamiltonian of Equation (24). Indeed, as 𝑁 →∞, this approximation
converges to 𝑈(1) with an error scaling of 𝑂(1

𝑁). There are higher-order Trotterizations as well with
better error scaling in terms of 𝑁 , but usually worse depth scaling per time step. Moreover, in QAOA,
these time intervals are replaced with parameters, which can be optimized to significantly increase
convergence compared to the uniform discretization.

5

Quantum Approximate Optimization Algorithm (QAOA)
The goal of QAOA is to find an approximation of the ground state of a given Hamiltonian, which as
discussed above is exactly what we need to solve our problem. Just as with quantum annealing, the
approach of QAOA is to start with an easy to prepare ground state of some Hamiltonian and then evolve
the system to the desired ground state. Instead of evolving this directly, QAOA uses a parametrized version
of the “first-order Trotterization” from Equation (26).

The typical initial ground state is the uniform superposition of all possible states. This can be prepared
using a single layer of Hadamard gates. The Hadamard gate is a 1-qubit gate give by

𝐻|0⟩ = |+⟩ = 1√
2
|0⟩ + 1√

2
|1⟩ (27)

which when applied to the state |0⟩ gives a uniform superposition of |0⟩ and |0⟩. When you measure the
state |+⟩, 50% of the time you will measure 0 and 50% of the time you will measure 1. Moreover, by
applying a Hadamard gates to each of two qubits in the state |00⟩ gives a uniform superposition of the 4
possible standard “computational-basis states” for 2 qubits.

𝐻 ⊗𝐻|00⟩ = |++⟩ = 1
2
|00⟩ + 1

2
|01⟩ + 1

2
|10⟩ + 1

2
|11⟩ (28)

Finally, for our problem, since we have 6 qubits, we will need to apply 6 Hadamard gates, one to each to
qubit.

|Ψ𝑀
0 ⟩ = 𝐻 ⊗𝐻 ⊗𝐻 ⊗𝐻 ⊗𝐻 ⊗𝐻|000000⟩ = |++++++⟩ (29)

This gives the uniform superposition of the 64 possible states, which encodes the 64 possible solutions to
our problem as shown in Equation (38) below. Now, the Hamiltonian for which this uniform superposition
is the ground state is simply given the negative sum of 𝑋 gates, since −𝑋|+⟩ = −|+⟩.

𝐻𝑀 = −∑
𝐼∈𝒵

𝑋𝐼 = −(𝑋𝐴 +𝑋𝐵 +𝑋𝐶 +𝑋𝐷 +𝑋𝐸 +𝑋𝐹) (30)

Finally, the evolution operator for this Hamiltonian is given as follows.

𝑈𝑀(𝑡) =⨂
𝐼∈𝒵

𝑅𝑋𝐼
(−2𝑡)

= 𝑅𝑋𝐴
(−2𝑡) ⊗ 𝑅𝑋𝐵

(−2𝑡) ⊗ 𝑅𝑋𝐶
(−2𝑡) ⊗ 𝑅𝑋𝐷

(−2𝑡) ⊗ 𝑅𝑋𝐸
(−2𝑡) ⊗ 𝑅𝑋𝐹

(−2𝑡)
(31)

The subscript “M” throughout stands for “mixing” because this operator mixes probability amplitude
between the computational-basis states, allowing QAOA to explore the landscape of all possible solutions.
On the other hand the unitary evolution operator 𝑈𝐶(𝑡) for the cost Hamiltonian of Equation (23) is
responsible for encoding the cost function in the phases of the qubits, which are then mixed by the mixing
operator. The cost unitary is diagonal in the computational basis, which means it does not change the
probabilities directly.

By alternatingly applying the cost and mixing operators, QAOA concentrates the probability distribution
near “good” solutions. This process approximates quantum annealing, and the full operator, shown below,
can be viewed as a parametrized version of the first-order Trotterization of Equation (26).²

𝑈QAOA = ∏
𝑁

𝑘=1
𝑈𝐶(𝛾𝑘)𝑈𝑀(𝜇𝑘). (32)

²The cost operator is applied first in QAOA, because applying 𝑈𝑀(𝑡) to the initial state |++++++⟩ has no observable
effect, as it only adds a global phase.

6

Outline of QAOA
Goal: Find an approximation of the ground state |Ψ𝐶

0 ⟩ of a cost function Hamiltonian 𝐻𝐶 as in
Equation (16) (or 𝐻̃𝐶 as in Equation (22)).

Strategy
1. Construct a variational quantum circuit depending on 2𝑁 parameters 𝛾1, 𝜇1, 𝛾2, 𝜇2,…, 𝛾𝑁 , 𝜇𝑁 as

follows.
i. Initialize the state |+⟩ on each qubit.

ii. Alternatingly apply circuits for the cost and mixing operators 𝑁 times with the parameters
𝛾𝑘 and 𝜇𝑘 to apply 𝑈QAOA of Equation (32).

iii. Measure all the qubits.
2. Optimize the parameters, by repeatedly running the circuit from Step 1 multiple times to estimate

the cost of the prepared state according to 𝐻𝐶 and updating the parameters to lower this cost.
3. Sample the final optimized circuit multiple times and output the most frequently measured states.

Now, we will discuss the construction of the variational quantum circuit of Step 1 in the next section, but
this still leaves a big question unanswered concerning Step 2. How do we actually optimize the
parameters? There is a plethora of classical optimization algorithms which could be used for this step of
QAOA. However, we will not delve into these, but instead rely on existing implementations from the open-
source Python library SciPy [3].

Constructing a Quantum Circuit for QAOA
Following the outline of QAOA above, the variational circuit has the following form.

|0⟩ 𝐻 …

|0⟩ 𝐻 …

|0⟩ 𝐻 …

|0⟩ 𝐻 …

|0⟩ 𝐻 …

|0⟩ 𝐻 …

𝑈̃𝐶(𝛾1) 𝑈𝑀(𝜇1) 𝑈̃𝐶(𝛾2) 𝑈𝑀(𝜇2) 𝑈̃𝐶(𝛾𝑁) 𝑈𝑀(𝜇𝑁)

(33)

Here, 𝐻 stands for the Hadamard gate. Now, the subcircuit for mixing operator is implemented using 𝑅𝑋-
gates as follows.

|𝑥𝐴⟩ 𝑅𝑋(𝜇𝑘)

|𝑥𝐵⟩ 𝑅𝑋(𝜇𝑘)

|𝑥𝐶⟩ 𝑅𝑋(𝜇𝑘)

|𝑥𝐷⟩ 𝑅𝑋(𝜇𝑘)

|𝑥𝐸⟩ 𝑅𝑋(𝜇𝑘)

|𝑥𝐹 ⟩ 𝑅𝑋(𝜇𝑘) (34)

Finally, the subcircuit for the cost operator is implemented using 𝑅𝑍𝑍-gates as follows.

7

|𝑥𝐴⟩

|𝑥𝐵⟩

|𝑥𝐶⟩

|𝑥𝐷⟩

|𝑥𝐸⟩

|𝑥𝐹 ⟩

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐴
𝐵
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐴
𝐶
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐴
𝐷
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐴
𝐸
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐴
𝐹
) 𝑅

𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐵
𝐶
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐵
𝐷
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐵
𝐸
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐵
𝐹
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐶
𝐷
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐶
𝐸
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐶
𝐹
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐷
𝐸
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐷
𝐹
)

𝑅
𝑍
𝑍
(𝛾

𝑘
⋅𝑐

𝐸
𝐹
)

(35)

So, the entire QAOA circuit requires just 𝐻-gates, 𝑅𝑋-gates, and 𝑅𝑍𝑍-gates. In the next section, we will
see how to implement this circuit in Qiskit along with the QAOA algorithm. When it comes to hardware
implementations, not every machine can natively implement these gates, so this circuit will require
transpilation. In the appendices, we briefly discuss how to modify this circuit to run on “VLQ,” which is a
24-qubit superconducting quantum computer from IQM whose native gate set consists of 𝑅𝑋 and 𝐶𝑍 .

Qiskit Implementation of QAOA for Our Problem
First, we need to import everything we need from Qiskit [4] and SciPy [3].

1
2
3
4
5
6
7
8
9

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit import Parameter
from qiskit.quantum_info import SparsePauliOp

from qiskit_aer.primitives import Estimator
from qiskit_aer import AerSimulator

from scipy.optimize import minimize
from scipy.constants import pi

Then, we input our problem as a cost matrix and specify the number of discretization steps our QAOA
circuit should have.

11
12
13
14
15
16

cost_matrix = [
 [0, 17, 30, 10, 6, 31],
 [17, 0, 10, 18, 41, 12],
 [30, 10, 0, 9, 20, 7],
 [10, 18, 9, 0, 12, 8],
 [6, 41, 20, 12, 0, 15],

8

17
18
19
20

 [31, 12, 7, 8, 15, 0],
]

steps = 5

Then, we define our mixing and cost operator subcircuits.

21
22
23
24
25
26
27
28
29
30
31
32
33
34

def cost_operator_subcircuit(n, cost_matrix, param):
 sub = QuantumCircuit(n, name="U_C")

 for i in range(n):
 for j in range(i + 1, n):
 sub.rzz(cost_matrix[i][j] * param, i, j)

 return sub.to_gate()

def mixing_operator_subcircuit(n, param):
 sub = QuantumCircuit(n, name="U_M")
 sub.rx(param, range(n))

 return sub.to_gate()

Next, we set up our parameters and build the variational circuit using the cost and mixing operator
subcircuits.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

n = len(cost_matrix)
gamma = [Parameter(f"γ{i}") for i in range(steps)]
mu = [Parameter(f"μ{i}") for i in range(steps)]

qr = QuantumRegister(n, name="x")
cr = ClassicalRegister(n)
qc = QuantumCircuit(qr, cr)

qc.h(qr)

for i in range(steps):
 qc.append(cost_operator_subcircuit(n, cost_matrix, gamma[i]), qr)
 qc.append(mixing_operator_subcircuit(n, mu[i]), qr)

qc.measure(qr, cr)

Then, we set up our cost Hamiltonian (𝐻̃𝐶) and define the cost function that we want to minimize. Here,
we are using the Qiskit Aer simulator to estimate the energy of the state produced by our circuit.

49
50
51
52
53
54
55
56
57
58
59
60

max_cost = max(map(max, cost_matrix))

H_C = 0.5 * SparsePauliOp.from_list(
 [
 (
 "I" * (i) + "Z" + "I" * (j - i - 1) + "Z" + "I" * (5 - j),
 cost_matrix[i][j] / max_cost,
)
 for i in range(n)
 for j in range(i + 1, n)
]
)

9

61
62
63
64
65
66

estimator = Estimator()

def cost(params):
 val = estimator.run(qc, H_C, parameter_values=params).result().values[0]
 return val

Then, we choose some initial parameters and a classical optimization method, and we optimize our circuit.

71
72
73
74
75

initial_params = [pi] * steps + [pi / 2] * steps
optimum = minimize(cost, x0=initial_params, method="Powell")

optimal_params = optimum.x
optimal_qc = qc.assign_parameters(optimal_params)

Finally, we sample this optimized circuit and record the measurement counts. Our approximate solutions
will be the most frequently measured outcomes. Again, we are using the Qiskit Aer simulator to sample
our final circuit.

76
77
78

sim = AerSimulator()
result = sim.run(optimal_qc.decompose(), shots=1_000).result()
counts = result.get_counts()

In the next section, we will discuss the results of this simulation, and see how well we are able to solve our
problem.

Results
Below are the pooled shot counts for sampling 5 separate optimizations of the circuit implemented in the
above Qiskit code. Instability is a perenniel problem in optimization often requiring careful tweaking of
meta-parameters for each specific optimization algorithm and problem. In this case, to dampen any
outlying runs, we decided to use run pooling rather than get into the weeds of tweaking meta-parameters,
but each problem could require different techniques for fine-tuning.

|0
00
00
0⟩

|0
00
00
1⟩

|0
00
01
0⟩

|0
00
01
1⟩

|0
00
10
0 ⟩

|0
00
10
1⟩

|0
00
11
0⟩

|0
00
11
1⟩

|0
01
00
0⟩

|0
01
00
1⟩

|0
01
01
0⟩

|0
01
01
1⟩

|0
01
10
0⟩

|0
01
10
1⟩

|0
01
11
0⟩

|0
01
11
1⟩

|0
10
00
0⟩

|0
10
00
1⟩

|0
10
01
0⟩

|0
10
01
1⟩

|0
10
10
0⟩

|0
10
10
1⟩

|0
10
11
0⟩

|0
10
11
1⟩

|0
11
00
0⟩

|0
11
00
1⟩

|0
11
01
0⟩

|0
11
01
1⟩

|0
11
10
0⟩

|0
11
10
1⟩

|0
11
11
0⟩

|0
11
11
1⟩

|1
00
00
0⟩

|1
00
00
1⟩

|1
00
01
0⟩

|1
00
01
1⟩

|1
00
10
0⟩

|1
00
10
1⟩

|1
00
11
0⟩

|1
00
11
1⟩

|1
01
00
0⟩

|1
01
00
1⟩

|1
01
01
0⟩

|1
01
01
1⟩

|1
01
10
0⟩

|1
01
10
1⟩

|1
01
11
0⟩

|1
01
11
1⟩

|1
10
00
0⟩

|1
10
00
1⟩

|1
10
01
0⟩

|1
10
01
1⟩

|1
10
10
0⟩

|1
10
10
1⟩

|1
10
11
0⟩

|1
10
11
1⟩

|1
11
00
0⟩

|1
11
00
1⟩

|1
11
01
0⟩

|1
11
01
1⟩

|1
11
10
0⟩

|1
11
10
1 ⟩

|1
11
11
0 ⟩

|1
11
11
1 ⟩

Quantum State

0.0

0.2

0.4

0.6

0.8

× 103

Po
ol

ed
 S

ho
t C

ou
nt

The dashed columns are the counts for our initial guess from Figure (1), which is significantly less frequent
than two most frequent outcomes. The shot counts are symmetric because swapping 0’s and 1’s does not
change the corresponding cut of the graph. The solid columns correspond to the two most frequent
outcomes, and they do indeed turn out to be the optimal solution. We can directly calculate the energy of
each state according to 𝐻𝐶 to verify this.

10

|0
00
00
0⟩

|0
00
00
1⟩

|0
00
01
0⟩

|0
00
01
1⟩

|0
00
10
0⟩

|0
00
10
1⟩

|0
00
11
0⟩

|0
00
11
1⟩

|0
01
00
0⟩

|0
01
00
1⟩

|0
01
01
0⟩

|0
01
01
1⟩

|0
01
10
0⟩

|0
01
10
1⟩

|0
01
11
0⟩

|0
01
11
1⟩

|0
10
00
0⟩

|0
10
00
1⟩

|0
10
01
0⟩

|0
10
01
1⟩

|0
10
10
0⟩

|0
10
10
1⟩

|0
10
11
0⟩

|0
10
11
1⟩

|0
11
00
0⟩

|0
11
00
1⟩

|0
11
01
0⟩

|0
11
01
1⟩

|0
11
10
0⟩

|0
11
10
1⟩

|0
11
11
0⟩

|0
11
11
1⟩

|1
00
00
0⟩

|1
00
00
1⟩

|1
00
01
0⟩

|1
00
01
1⟩

|1
00
10
0⟩

|1
00
10
1⟩

|1
00
11
0⟩

|1
00
11
1⟩

|1
01
00
0⟩

|1
01
00
1⟩

|1
01
01
0⟩

|1
01
01
1⟩

|1
01
10
0⟩

|1
01
10
1⟩

|1
01
11
0⟩

|1
01
11
1⟩

|1
10
00
0⟩

|1
10
00
1⟩

|1
10
01
0⟩

|1
10
01
1⟩

|1
10
10
0⟩

|1
10
10
1⟩

|1
10
11
0⟩

|1
10
11
1⟩

|1
11
00
0⟩

|1
11
00
1⟩

|1
11
01
0⟩

|1
11
01
1⟩

|1
11
10
0 ⟩

|1
11
10
1 ⟩

|1
11
11
0 ⟩

|1
11
11
1 ⟩

Quantum State

−200

−150

−100

−50

0
En

er
gy

From this plot, we can see that our initial guess is not actually that far off, but there are better cuts
including the optimal cut. The two states corresponding to this optimal cut are precisely the ground states
of 𝐻𝐶 (and therefore als 𝐻̃𝐶)

𝒢(𝐻𝐶) = { = |011001⟩, = |100110⟩} (36)

Finally, we can visualize the optimal cut as follows.

𝐴
𝐵

𝐶

𝐷

𝐸 𝐹 (37)

Our initial guess had an energy of −158, whereas the optimal cut has an energy of −189 which is roughly
a 20% improvement!

11

References
[1] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” arXiv,

Nov. 2014, doi: 10.48550/arXiv.1411.4028.

[2] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm Applied to
a Bounded Occurrence Constraint Problem,” arXiv, Dec. 2014, doi: 10.48550/arXiv.1412.6062.

[3] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, no. 3, pp. 261–272, Feb. 2020, doi: 10.1038/s41592-019-0686-2.

[4] A. Javadi-Abhari et al., “Quantum computing with Qiskit,” arXiv, May 2024, doi: 10.48550/
arXiv.2405.08810.

12

https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1412.6062
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.48550/arXiv.2405.08810

Appendix: Ground State of Mixing Hamiltonian
The ground state |Ψ𝑀

0 ⟩ of the mixing Hamiltonian 𝐻𝑀 is the superposition of all possible cuts with equal
weighting, as depicted below.

|Ψ𝑀
0 ⟩ = 1

8 + 1
8 + 1

8 + 1
8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8 +

1
8 + 1

8 + 1
8 + 1

8

(38)

The 18 weighting comes from the fact that each of the 64 states has a probability of 164 ≈ 1.5% of appearing
when measuring this state.

Appendix: Implementation on IQM Star 24
The IQM Star 24 is a 24-qubit QPU with superconducting transmon qubits and a star-shaped topology. The
native single-qubit operation is the 𝑃𝑅𝑋-gate, which has two parameters.

𝑃𝑅𝑋(𝜃, 𝜑) = 𝑅𝑍(𝜑)𝑅𝑋(𝜃)𝑅𝑍(−𝜑) (39)

From this it is possible to define each of the rotation gates 𝑅𝑋 , 𝑅𝑌 , and 𝑅𝑍 as follows.

𝑅𝑋(𝜃) = 𝑃𝑅𝑋(𝜃, 0)
𝑅𝑌 (𝜃) = 𝑃𝑅𝑋(𝜃, 𝜋/2)
𝑅𝑍(𝜃) = 𝑃𝑅𝑋(−𝜋, 0)𝑃𝑅𝑋(𝜋,−𝜃/2)

(40)

Each qubit is coupled with a central resonator, and the native two qubit operation is the controlled-Z-gate
(or 𝐶𝑍-gate) between any qubit and the central resonator. So, we if want to implement the above circuit
for QAOA, we need still need to implement 𝑅𝑍𝑍-gates using 𝑃𝑅𝑋-gates and 𝐶𝑍-gates, which can be
done as folows.

13

𝑞1

𝑞2

res

𝑅𝑍𝑍(𝜃)
=

𝑞1 H 𝑃𝑅𝑋(𝜃, 0) H

𝑞2

res

(41)

However, this still leaves a number of Hadamard gates, which can be implemented using two 𝑃𝑅𝑋-gates
(up to a global phase). Now, the Hadamard gate is self-adjoint which means that applying the Hadamard
gate twice does nothing at all. So, almost all of the Hadamard gates can be simplified away. In the end, the
number of 𝑃𝑅𝑋-gates and 𝐶𝑍-gates is given as follows.

𝑁𝑃𝑅𝑋 = 2 |𝑉 | + (|𝑉 | + |𝐸|) ⋅ 𝑁
𝑁𝐶𝑍 = 2|𝐸| ⋅ 𝑁

(42)

Here, |𝑉 | is the number of vertices in the graph, |𝐸| is the number of edges in the graph, and 𝑁 is the
number of discretization steps in the QAOA algorithm. For our example, we have |𝑉 | = 6, |𝐸| = 15 and
𝑁 = 5. So, we have the following gate counts.

𝑁𝑃𝑅𝑋 = 117
𝑁𝐶𝑍 = 150 (43)

Appendix: Data and Resources
The Python code implementing the QAOA algorithm tailored to this problem using Qiskit [4] and SciPy [3]
is available at https://gist.github.com/gkpotter/2fb05ac6e901f413295ea67af1ebb7cd.

14

https://gist.github.com/gkpotter/2fb05ac6e901f413295ea67af1ebb7cd

	Problem: Optimizing Last-Mile Routes for a Delivery Company
	Precise Formulation of Our Problem
	Embedding Our Problem in a Quantum System
	Motivation from Quantum Annealing
	Quantum Approximate Optimization Algorithm (QAOA)
	Constructing a Quantum Circuit for QAOA
	Qiskit Implementation of QAOA for Our Problem
	Results
	References
	Appendix: Ground State of Mixing Hamiltonian
	Appendix: Implementation on IQM Star 24
	Appendix: Data and Resources

