

DeiC

DeiC Q-Access Roadshow

October 22, 2025

The new VLQ quantum computer contains 24 superconducting qubits in a star-shaped topology and will be available to users in Denmark!

DeiC Q-Access Roadshow

October 22, 2025

Outline

- 1. Introduction to DeiC's Quantum Department
- 2. DeiC's New Quantum Guide
 - a. Background of quantum computing
 - b. Landscape of quantum computing hardware and software providers
 - c. Algorithms & Near-term applications
- 3. LUMI-Q Consortium and VLQ Quantum Computer
 - a. EuroHPC Joint Undertaking
 - b. IQM Quantum Computers
 - c. DeiC's Participation in the LUMI-Q Consortium

4. Proof-of-concept Use Cases

- a. Optimization
- b. Simulation
- c. Machine Learning

5. Q-Access

- a. Consulting and Office Hours
- b. Sandbox Access
- c. Calls for specialized Access
- d. LUMI-Q VLQ Access
- 6. Q & A with Q-Access Team


1. Introduction to DeiC's Quantum Department

Overview of DeiC

The **Danish e-Infrastructure Consortium (DeiC)** develops and coordinates access to digital research infrastructure for Danish universities, enabling research and education at a high international level.

DeiC's Quantum Department

DeiC's Quantum Department is the newest department in DeiC, established as part of the implementation of the Danish government's national quantum strategy.

Initiatives

Q-Competence

- Disseminate skills and increase understanding of the potential and risks of quantum technology.
- Financial support for developing quantum computing material and events.

Q-Algorithm

- DQA Academy to boost work in developing and testing quantum algorithms and the associated software stack.
- Scholarships for Ph.D. students and Postdocs.

Q-Access

- Calls for specialized access to quantum computers.
- Sandbox access via Microsoft Azure for testing.
- Consulting service with quantum experts.
- Access to the new LUMI-Q VLQ quantum computer.
- Overviews, guides, and step-by-step tutorials.

Niels Bohr Quantum Summer School

Two-week summer school, for the next 4 years, for both Danish and international Ph.D. students to learn about quantum computing and attract talent to the quantum community in Denmark.

LUMI-Q

The LUMI-Q consortium set up a quantum computer called "VLQ," which has 24 superconducting qubits in a star-shaped topology. IQM in Finland is the hardware provider, and it is deployed in the Czech Republic at the IT4Innovations Centre at the Technical University of Ostrava.

2.DeiC's New Quantum Guide

A new published work

A clear, unified overview of quantum computing published by DeiC's Q-Access team to show

- What resources exist (types, major providers, etc)
- How to get access
- How to benchmark quantum devices
- Interdisciplinary Interface, e.g., AI & QC

Target multiple audience groups

- General audiences (policy makers, journalists, industry newcomers)
- Researchers and technical users
- Decision makers (funding, infrastructure)

Quantum Computing Guide

for General Audiences to Technical Users in Denmark

Published by DeiC's Quantum Department

Last Updated October, 2025

Danish e-infrastructure Consortium, Produktionstorvet. Building 426, 2800 Lyngby, Denmark.

Written by Muyang Liu¹ and Greyson Potter²

 $muyang.liu@deic.dk^1$ $greyson.potter@deic.dk^2$

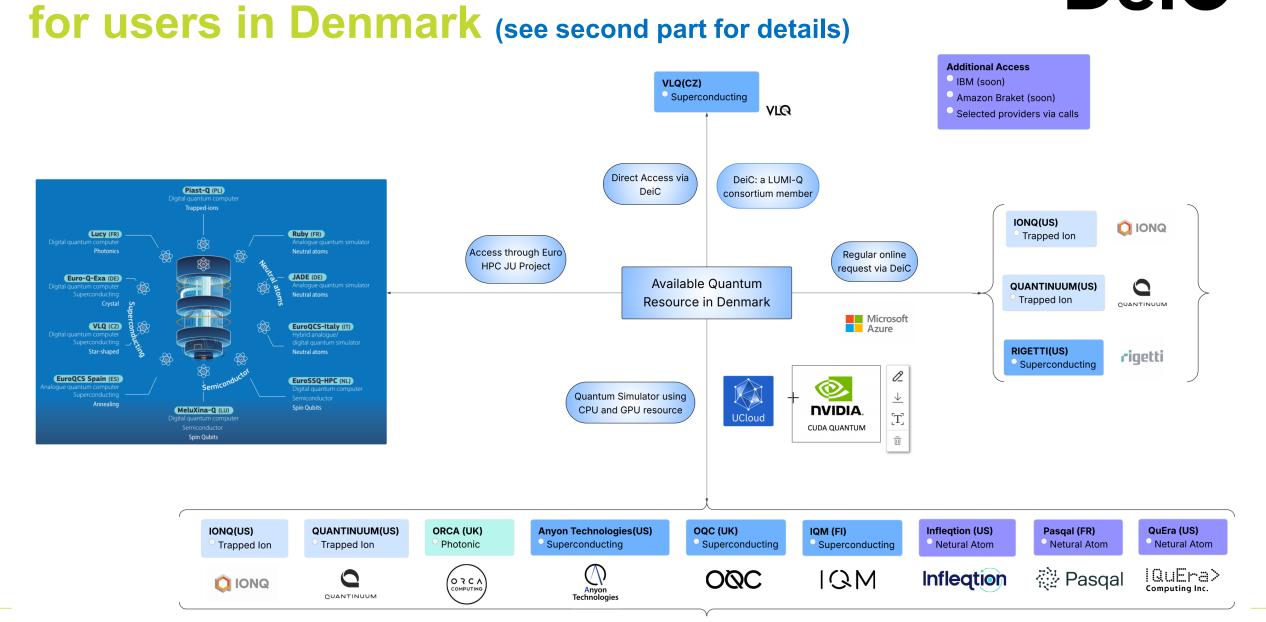
How to use this manual - flexible navigation

Jump directly to what you need!

- Sec 1: Historical background and motivation
 - John Preskill: Quantum computing 40 years later
 - O IBM: What is quantum computing?
- Sec 2: Quantum algorithms and their applications
 - Quantum Algorithm Zoo
- Sec 3-5: Practical access mode
 - DeiC Q-Access: Access to Quantum Computers
 - VLQ: the quantum computer of the LUMI-Q consortium
 - UCloud User Guide
 - Google Quantum AI: Choosing hardware for your qsim simulation

- Sec 6-7: Benchmarks, modalities and pricing
 - Deep Lall et al: A Review and Collection of Metrics and Benchmarks for Quantum Computers: definitions, methodologies and software
- Sec 8: EuroQHPC an integration project
 - The European High Performance Computing Joint Undertaking: Quantum Computers
- Sec 9: Quantum Interface with AI
 - Jacob Biamonte et al: Quantum Machine Learning
 - Maria Schuld & Francesco Petruccione: Machine Learning with Quantum Computers
 - LUMI: From binary computing to quantum AI
- Appendix: Additional services and initiatives

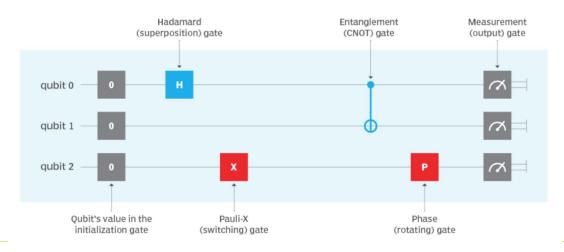
How to use this manual - flexible navigation

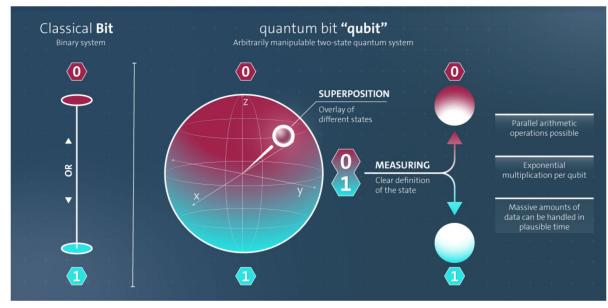

Contents			
Preface	i		
User's Manual: How to Read this Report			
1. Motivation: Why Quantum Computing 1.1. The theoretical foundation of quantum computing	1 2 2 3 6 7		
2. Introduction to quantum algorithms and applications 2.1. A Toy Model - Store Selection in Manhattan Market 2.2. Quantum computing use cases	10 10 12 13		
4. Quantum resources available through DeiC 4.1. Sandbox Access - Microsoft Azure Platform 4.2. LUMI-Q Consortium - participated by DeiC 4.2.1. Properties of VLQ 4.2.2. Access to the upcoming LUMI-Q VLQ quantum computer 4.3. Access to specific quantum hardware and simulators	13 14 15 15 15 16		
5. UCloud Allocation for users affiliated with Danish universities 5.1. Why Use UCloud for Quantum Simulation?	17 17 18 19		
6. Metrics and Benchmarks of Quantum Computers 6.1. Hardware metrics	21 22 23 23		

7. Types of Quantum Computers and How They Work	26
7.1. How to create qubits	 26
7.2. Introduction to Common Types of Quantum Computers	 26
7.2.1. Superconducting	 27
7.2.2. Trapped Ions	 35
7.2.3. Neutral Atoms	 39
7.2.4. Photonic	 44
7.3. Cost models and compared pricing plans for QPU resource	 46
8. EuroQHPC Quantum-Classical Integration	47
8.1. Accessible quantum computers	 47
8.2. How to apply - current status of access	 48
9. Quantum Interface with Al	50
9.1. The Remarkable Achievements and Application of AI	 50
9.2. Why seek quantum advantage in Machine Learning	 52
9.3. (Hybrid) Quantum Machine Learning - NISQ era	 55
9.3.1. Quantum Neural Network and Quantum Kernel Methods	 55
9.3.2. Other interesting quantum machine learning methods	 59
9.4. Quantum algorithms as subroutine of QML - Fault tolerent era .	 61
9.4.1. An introduction to the HHL Algorithm	61
9.4.2. HHL: the backbone to many QML tasks	61
9.4.3. Other milestone in FTQC-based QML algorithms	63
9.5. A specific project under EuroHPC JU - LUMI AI Quantum	 63
Appendix	65
A. Help Desk & Service - DeiC Quantum	65
A.1. Regular Online Office Hour	 65
A.2. Backoffice - Consulting Service	 65
A.3. Q-Access Roadshow	 66
B. Grants and Funding	67
C. Additional Quantum Initiatives	68
C.1. Q-Competence	 68
C.2. Q-Algorithm	 69

Quantum computing resources accessible

Background on Quantum Computing


Computational units: Qubit


Superconducting circuit, trapped ions, neutral atoms...

Manuplational units: Quantum gates

- Hardware-level processes that change the qubit's *quantum* state, e.g., Laser beams on ions induce couplings:
 - 1. between the qubit states (for single qubit gate)
 - between the internal qubit space and the shared motional spaces (for entanglement)

Multi-qubit quantum circuit

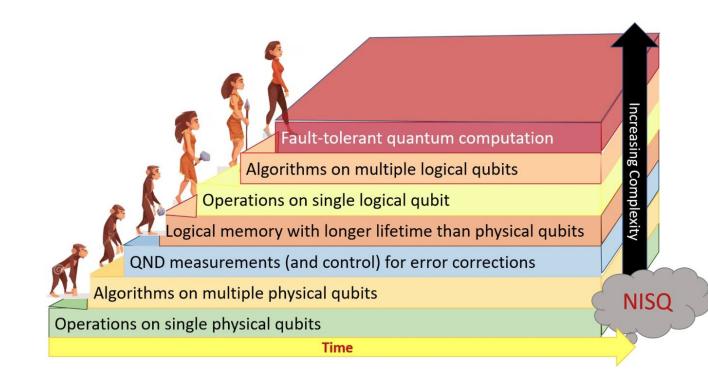
Quantum Circuit - a diagram to display quantum algorithm

Composed by sequence of quantum gates

Native-gates: every quantum hardware platform has a limited set of physical operations that it can directly implement

- **Compiler** decomposes high entangled gates, Toffoli, T gate, Hadamard, into optimal sequences of *native gates*
- Benchmarking & Pricing: cost and performance are measured at the native-gate level

Two Development Stages - NISQ & FYQC



NISQ (Noisy Intermediate-Scale Quantum)

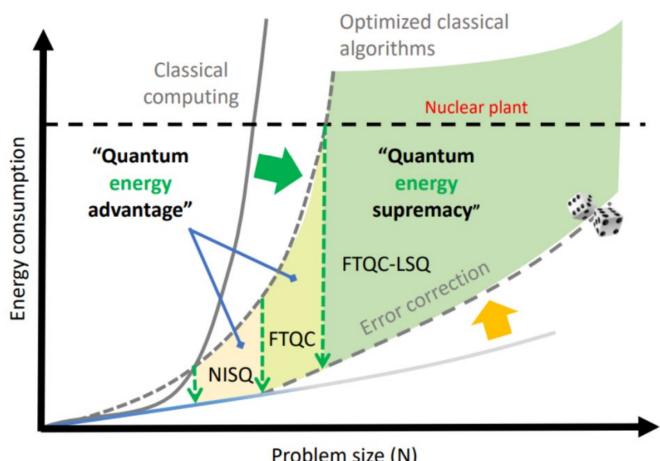
- Current frontier of quantum computing technology
- A scale of tens to a few hundred physical qubits
- Absence of full error correction

FTQC (Fault-Tolerant Quantum Computing)

- Robust error correction logical qubits
- Execute complex algorithms at large scale
 - For example, HHL, Shor's algorithm....

Energy footprint – quantum efficiency¹

High demanding supercomputers draw substantial power


- e.g., Frontier supercomputer ≈ **504 MWh** per day
 - summing up the energy consumed by around 17 thousand average homes in the U.S.

Quantum processors - orders of magnitude

far below flagship HPC systems

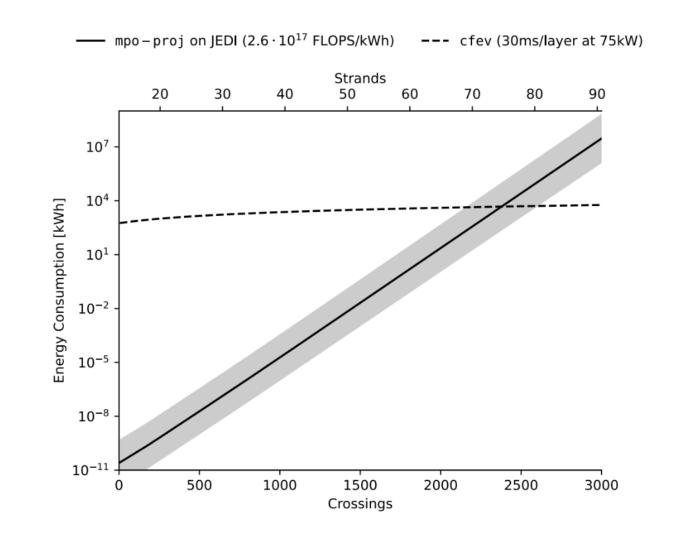
System	Power(kW)	Cooling consumption
Frontier supercomputer	24,600	33% – 40%
Superconducting	25 - 140	64%
Trapped Ions	2	15%
Neutral atom	7-20	$\sim 50\%$
Photons	4	75%

Table 2: Illustrative electricity use. Source: Olivier Ezratty CC, 2023.

Problem size (N)

Summarized from Pasgal, Quantum Computing to Greener Calculations (Oct. 5, 2023).

A case study - Quantinuum vs HPC¹



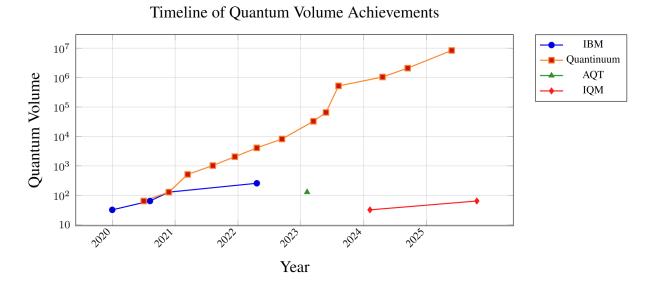
Task: Evaluating the Jones polynomial for given knots

- A classical algorithm (MPO-PROJ) is assumed to run on the most energy efficient supercomputer:
 Jülich-JEDI
 - peak efficiency of 2.6 × 1017 FLOPS/kWh
- Quantum circuit implementation (cefv) on the Quantinuum H2 trapped-ion system

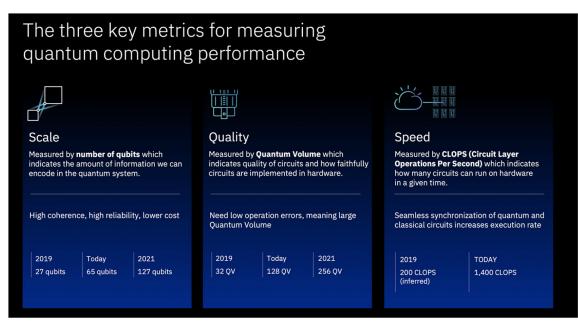
Result:

 cfev (around hundreds of kWh level) used by Quantinuum becomes more energy efficient than mpo-proj at large scales (crossings ≥ 2400).

1. Laakkonen et al, "Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial," arXiv:2503.05625



Benchmarking quantum computer



A simple and quick evaluation for quantum computers, - IBM's benchmarking framework through three key metrics:

- Scale: number of qubits (see next slides for comparison) –
 amount of encoded information
- Quality: fidelity and coherence time often quantified through the Quantum Volume (QV) benchmark

Speed – execution throughput and runtime efficiency

Quantum Volume: measures how large a *random quantum circuit* a processor can successfully execute

$$\mathrm{QV}=2^m$$

- m is the width of the largest random square circuit the device can accurately run.
- A **higher QV** means better **balance** between qubit number, quality, and control Reflects **real**, **system-level performance** rather than just qubit count.

DANISH eINFRASTRUCTURE CONSORTIUM

Toward Comprehensive Benchmarking

While IBM's framework provides a valuable starting point, a **truly comprehensive benchmark** must include *broader criteria* - span from hardware components to full application performance

A Review and Collection of Metrics and Benchmarks for Quantum Computers: definitions, methodologies and software

Deep Lall*1, Abhishek Agarwal*1, Weixi Zhang*1,2, Lachlan Lindoy¹, Tobias Lindström¹, Stephanie Webster¹, Simon Hall¹, Nicholas Chancellor³,4, Petros Wallden², Raul Garcia-Patron²,5, Elham Kashefi²,6, Viv Kendon², Jonathan Pritchard², Alessandro Rossi¹,7, Animesh Datta⁸, Theodoros Kapourniotis⁹, Konstantinos Georgopoulos⁹, and Ivan Rungger¹¹,1,10

¹National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
²School of Informatics, QSL, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
³School of Computing, Newcastle University, 1 Science Square, Newcastle upon Tyne NE4 5TG, United Kingdom
⁴Department of Physics, Joint Quantum Centre, Durham University, South Road, Durham DH1 3LE, United Kingdom
⁵Phasecraft Ltd., London, United Kingdom

⁶Sorbonne Université, CNRS, LIP6, 75005 Paris, France
 ⁷Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
 ⁸Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
 ⁹National Quantum Computing Centre, Didcot OX11 0QX, United Kingdom
 ⁹National Quantum Computer Science, Royal Holloway, University of London, Egham, TW20 0EX, United F

 $^{10} Department \ of \ Computer \ Science, \ Royal \ Holloway, \ University \ of \ London, \ Egham, \ TW20 \ 0EX, \ United \ Kingdom$

- **Architectural properties** Qubit connectivity topology, Native gate set and compilation overhead
- Gate quality Relaxation (T₁) and dephasing (T₂) times, gate set tomography-based process fidelity
- Stability standard deviation of metrics evaluated over a time interval
- + Distinguish metrics for Non-Gate-Based Quantum Computers!

Performance Metrics for Quantum Computers

M1. HARDWARE ARCHITECTURE PROPERTIES

M1.1. Number of usable qubits

M1.2. Pairwise connectivity

M1.3. Native gate set

M1.4. Capability to perform mid-circuit

M2. - M5. QUALITY METRICS

END-USEF

M2. QUBIT QUALITY

METRICS

M2.1. Qubit relaxation time

M2.2. Qubit dephasing time

M2.3. Idle qubit purity oscillation frequency

M3. GATE EXECUTION QUALITY METRICS

M3.1. Gate set tomographybased process fidelity M3.2. Diamond norm of a

quantum gate

M3.3. Clifford randomized

benchmarking average gate error

M3.4. Interleaved Clifford
randomized benchmarking gate

error
M3.5. Cycle-benchmarking composite process fidelity

M3.6. Over- or under-rotation

M3.7. State preparation and measurement fidelity

M4. CIRCUIT EXECUTION OUALITY METRICS

M4.1. Quantum volume
M4.2. Mirrored circuits
average polarization
M4.3. Algorithmic qubits
M4.4. Upper bound on the
variation distance

M5. WELL-STUDIED TASK EXECUTION QUALITY METRICS

M5.1. Variational Quantum
Eigensolver metric
M5.2. Quantum Approximate
Optimization Algorithm metric
M5.3. Fermi-Hubbard model

simulation metric **M5.4.** Quantum Fourier
Transform metric

HARDWARE COMPONENTS

APPLICATIONS

M6. SPEED METRICS

M6.1. Time taken to execute a general single- or

multi-qubit gate

M6.2. Time to measure qubits **M6.3.** Time to reset qubits

M6.4. Overall device speed on reference tasks

M7. STABILITY METRICS

M7.1. Standard deviation of a specified metric evaluated over a time interval

M8. - M10. NON-GATE-BASED QC METRICS

M8. METRICS FOR QUANTUM ANNEALERS

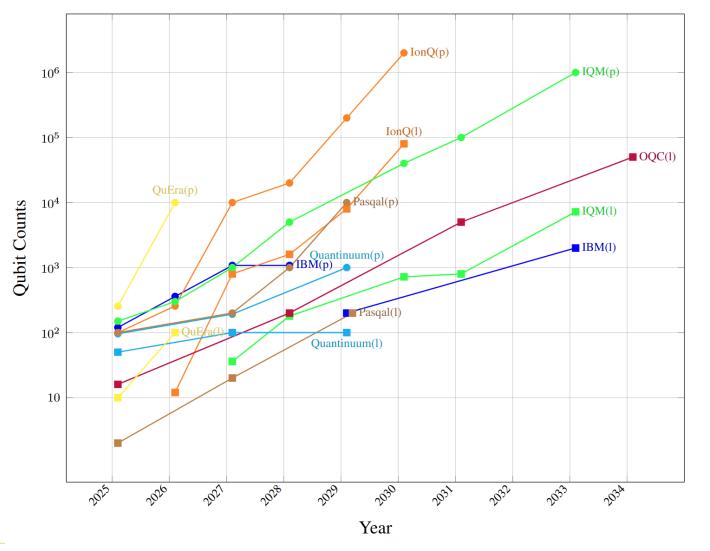
M8.1. Single qubit control errors **M8.2.** Size of largest mappable fully connected problem

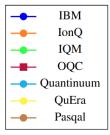
M8.3. Dimensionless sample temperature

M9. METRICS FOR BOSON SAMPLING DEVICES

M9.1. Hardware characterization and model as metrics
M9.2. Quantum advantage demonstration as metric

M10. METRICS FOR NEUTRAL ATOM DEVICES


M10.1. Analogue process fidelity
M10.2. Trap lifetime
M10.3. Reconfigurable connectivity



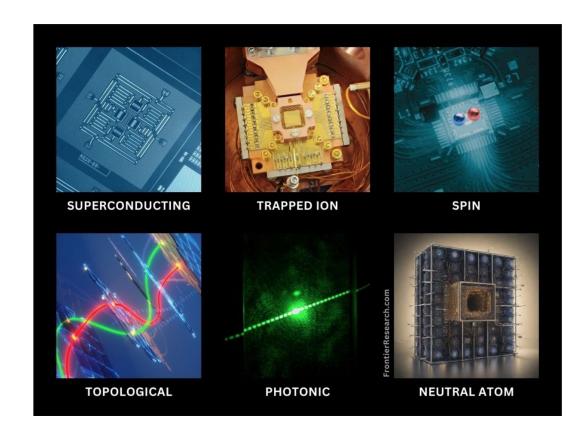
Development roadmap comparison

Qubit counts development across major providers: Circles = physical; Squares = logical.

Logical qubit threshold

- No current universal definition a logical qubit across hardware providers
- Typically, below 10⁻⁵
- Treat reported logical qubit counts in the diagram as indicative rather than directly comparable values across platforms

Models of quantum computing


Gate-Based Quantum Computing

- The most widely adopted model of quantum computation.
- Perform by a discrete sequence of unitary operations (quantum gates)
- Qubits are realized by physical systems that exhibit quantum behavior: superconducting circuits, trapped ions, neutral atoms

Non-Gate-Based Quantum Computing

- Exploit continuous quantum setups or intrinsic physical dynamics of a system to perform computation
- Quantum annealing energy-based optimization
 - networks of superconducting flux qubits; system evolves adiabatically from an initial Hamiltonian to a problem Hamiltonian
- Boson sampling photonic interference for sampling tasks
 - Photonic systems through beam splitters and phase shifters
- Analog quantum simulation direct evolution of quantum systems
 - trapped ions, Rydberg atoms, or cold atoms in optical lattices.

Image source: exoswan, 2025

Example – background of superconducting qubit

DeiC

Technology foundation

- 2025 Nobel Prize in Physics demonstrates quantum tunnelling and quantized energy levels in superconducting circuit, at a scale large enough to be held in the hand
- Foundation for many quantum hardware technologies such as quantum computers and quantum sensors

Background - Cooper pairs behave as a single quantum mechanical unit – this collective state uses a shared wave functions

Nobel Prize in Physics 2025

Ill. Niklas Elmehed © Nobel Prize Outreach

John Clarke

Ill. Niklas Elmehed © Nobel Prize

Michel H. Devoret

Prize share: 1/3

Ill, Niklas Elmehed © Nobel Prize

John M. Martinis

Prize share: 1/3

In a normal conductor, the electrons jostle with each other and with the material

When a material becomes a superconductor, the electrons join up as pairs, Cooper pairs, and form a current where there is no resistance. The gap in the illustration marks the Josephson junction.

Cooper pairs can behave as if they were all a single particle that fills the entire electrical circuit. Quantum mechanics describes this collective state using a shared wave function. The properties of this wave function play the leading role in the laureates' experiment.

Image source: Johan Jarnestad

Formation of a superconducting qubit

- A **superconducting circuit exhibiting quantized states** can therefore serve as a fundamental unit of quantum information **a qubit**.
- The **lowest energy state and the first excited state** represent the qubitstates **|0|** and **|1|**, respectively.
- By applying microwave photons to these qubits, their state can be precisely manipulated, enabling
 operations such as initialization, control, and readout of individual qubits.

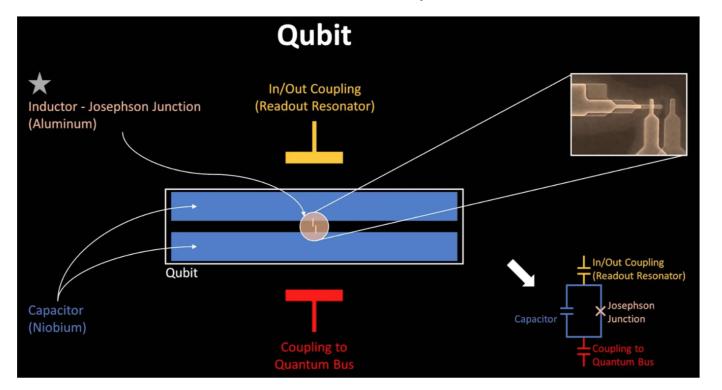


Figure 37: Formation of a qubit within a superconducting circuit. Source: IBM.

One major player – IBM Quantum

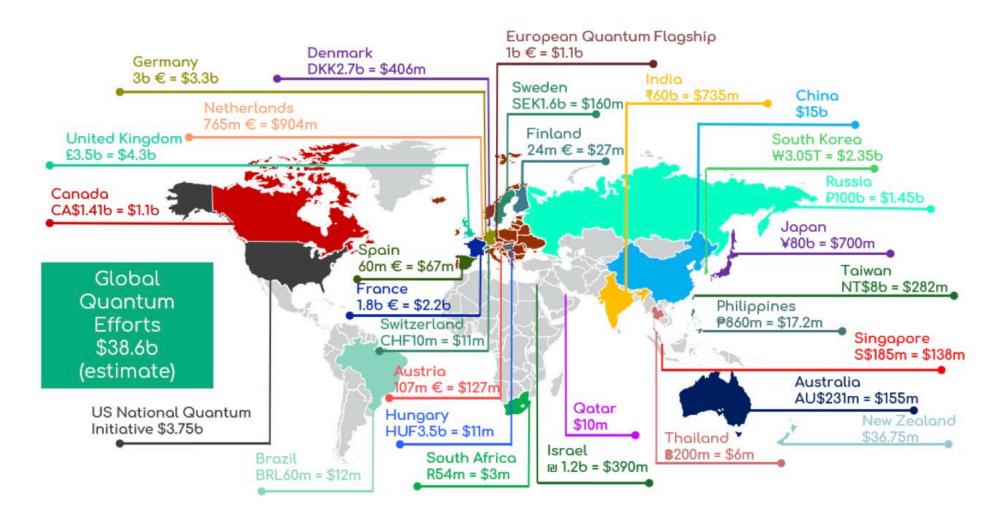
- Maintains the world's largest quantum programming and user ecosystem through its open-source software framework, Qiskit.
- **Cost:** per-minute plan tiers (\$48–\$96/min) + monthly subscription option.
- Aim to deliver a system that accurately runs 100 million gates on 200 logical qubits unlocking the first viable path to realizing the full power of quantum computing in 2029.
- **Global end users** spanning pharmacy, aerospace, chemistry, energy, routing, etc.

See the published Quantum Computing Guide for a comprehensive collection of information on 3 additional modalities of quantum computers and 10 additional quantum hardware providers, presented in a similar format.

Sector	End Users	Description
Pharmacy	Moderna ===	Apply variational quantum algorithms (VQAs) and Conditional Value at Risk (CVaR) to the mRNA secondary structure prediction. (Source)
→ Aerospace	Boeing	Quantum optimization on engineering strong, lightweight materials (ply composite). (Source)
Chemistry	Mitsubishi Chemical	Create and study accurate molecular simulations of complex electrochemical reaction for lithium superoxide rearrangement in lithium-oxygen batteries. (Source)
₽ Flectrical Car	Mercedes-Benz	Next generation of batteries technologies – quite possibly the lithium-sulfur (Li-S) battery towards a carbon-neutral new passenger car fleet. (Source)
Semiconductor	JSR •	Aid computer chemical simulations of photo-acid generators (PAGs) to develop new photoresists more quickly and at lower cost. (Source)
F Energy	E.ON	Energy price decision under weather-related risk modeling. (Source)
🙎 Routing	ExxonMobil ==	Model maritime inventory routing, analyze the strengths and trade-offs of different strategies to efficiently transport Liquefied Natural Gas (LNG). (Source)
Denmark	DTU, KU & SDU □	Develop quantum solutions to study molecular properties—such as metalloenzymes and light-harvesting chromophores in proteins. (Granted DKK 40 million by Novo Nordisk Foundation) (Source)

Table 7: IBM Quantum End Users by Industry

A new record – lonQ, October 21st, 2025


- The first reported instance of a quantum computing company crossing the "four-nines" (0.9999) benchmark
- Using IonQ's proprietary "Electronic Qubit Control" (EQC) technology, which uses precision electronics rather than just lasers
- Enabling integration into massive semiconductor fabrication processes
- Already delivering quantum advantage for industries
 - With AstraZeneca, AWS, and NVIDIA a 20x speedup in quantum-accelerated drug development announced in June.
 - Up to 12 percent improvement compared to classical computing in computer aided engineering unveiled in March.

Global Landscape of Quantum Computing

Implementing a Quantum Computer

Leaders in Superconducting QC

IBM (US)D-Wave (CA)Fujitsu (JP)Google (US)Anyon (CA)NEC (JP)

Amazon (US) Nord Quantique (CA) Origin Quantum (CN)

Huawei (cn)

Tencent (CN)

Rigetti (US) Oxford Quantum Circuits (GB)

SEEQC (US) QuantWare (NL)

Qolab (us) Alice & Bob (FR)

Bleximo (US) IQM (FI)

Leaders in Neutral Atom QC

QuEra (US)


Pasqal (FR)

Infleqtion (us)

Atom Computing (US)

planqc (DE)

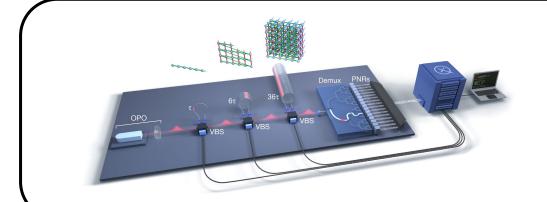
NanoQT (JP)

Implementing a Quantum Computer

Leaders in Trapped Ion QC

Quantinuum (US)


IonQ (US)


Universal Quantum (GB)

Oxford Ionics (GB)

AQT (AT)

Qubitcore (JP)

Leaders in Photonic QC

Xanadu (CA)

PsiQuantum (us)

ORCA Computing (GB)

QuiX Quantum (NL)

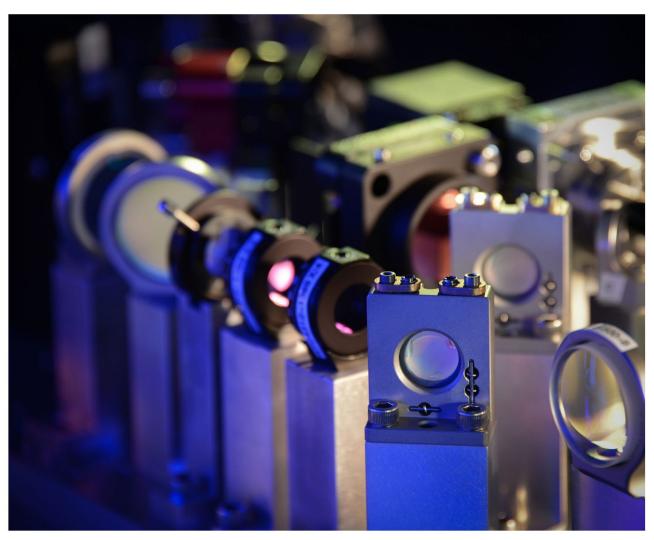
Quantum Computing Inc. (US)

Quandela (FR)

OptQC (JP)

TuringQ (CN)

eleQtron (DE)


NQCG (NO)

Magne – EIFO and the Novo Nordisk Foundation

- EIFO (Export & Investment Fund of Denmark) and the Novo Nordisk Fonden are investing €80 million to build a new uantum computer Magne.
- In partnership with Microsoft and Atom Computing, combining Atom's neutral-atom hardware and Microsoft's quantum software stack.
- 50 logical qubits backed by over 1200 physical qubits, full-stack hardware + software, and scheduled for its first tasks in 2026/27.
- 100% Danish-owned, based in Copenhagen, bolster Denmark and the Nordic region's positioning in the global quantum race
- Plan to build a small organization of around 10 employees, whose primary task will be to ensure optimal utilization of Magne across commercial and academic users

Hardware provider: Atom Computing(US)

From Quantum Devices to Quantum Advantage

• We've seen what quantum computers are made of - superconducting qubits, trapped ions, neutral atoms, etc

The real power of quantum computing lies not in qubits alone, but in the algorithms that make them useful.

- To begin, we'll look at a simple illustrative toy model to optimize store locations, which adapted from QuEra
 - so that everyone can follow without requiring any advanced mathematics background

A Toy Model: Store Selection in Manhattan Market¹



Problem and goal:

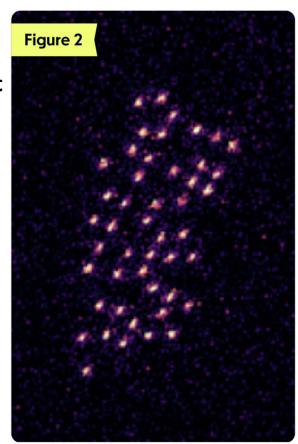
- A market decision maker wants to open several coffee shops in Manhattan.
- However, shops placed too close together would overlap in customer coverage.
- This creates a constraint optimization problem:
 - Choose the largest set of shop locations where no two are too close(adjacent)

Graph Theory Background

- Each node = a candidate shop location
- Each edge = two locations that are "too close"
- The goal is to find the maximum independent set a group of nodes with no edges connecting them
 - 1. Optimizing Store Locations using QuEra's Quantum Computer

An example set of store locations. Each vertex is a potential location; each edge is an independent set restriction that no adjacent locations can both have stores simultaneously.

A Toy Model: Store Selection in Manhattan Market¹


DeiC

Encoding the Problem

- Each node (shop location) is encoded as a **neutral atom qubit** (e.g., Rydberg atom).
- Atoms are arranged in a 2D array that mirrors the graph structure of the problem

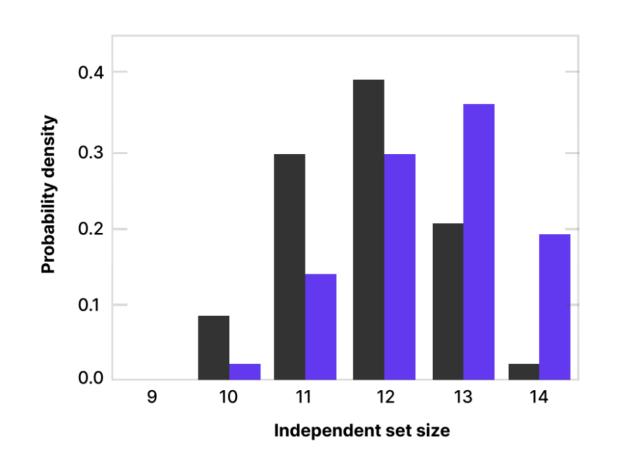
Quantum Evolution

- By tuning laser amplitude and phase, the system's ground state evolves toward the **optimal configuration**.
- The **final solution** is read out by measuring the presence or absence of atoms corresponding to which shop locations are selected.

A photograph of individual atoms positioned in Aquila's atomic array encoding the store placement problem. In this example, each atom corresponds to a

An example maximum independent set solution shown in red vertices.

1. Optimizing Store Locations using QuEra's Quantum Computer



A Toy Model: Store Selection in Manhattan Market¹

Results and Insights


- Quantum optimizer (results in blue) outperforms simple classical algorithm for small problem sizes
- More advanced classical algorithms still perform better today — but the quantum approach scales differently as hardware improves
- The same method can be applied to **logistics**, **network layout**, or **molecular modeling** (e.g., for **drug discovery**).
- Neutral-atom quantum computers can naturally encode and solve combinatorial optimization problems, providing a glimpse of how real-world decision-making tasks could benefit from quantum advantage.

Quantum simulation

Source: quantum simulation guide published by Google

Deciding among CPUs, single GPUs, or multiple GPUs - Key Factors Influencing demanding resource from HPC:

- Noise level Noisy simulations are much more computationally expensive than ideal noiseless ones
- Number of qubits Memory and computational resources scale exponentially with qubit count
 - Simulating 40+ qubits already exceeds the limits of most classical HPC systems.
- Circuit depth proportional to number of sequential operations or time steps in the quantum circuit.
 - Deeper circuits require proportionally more processing and memory to track evolving states.

Quantum algorithms and industry applications

						Y
60	Molecular simulation	Quantum optimization	Quantum Monte Carlo	Machine learning	HHL	Decryption ¹
Life sciences	Calculating a drug's binding affinity	Optimizing the location of clinical trial sites	Predicting the spread of disease in epidemics	Improving image classification in diagnostics	Modelling forces for protein - folding simulations	Protecting patient data privacy
Chemicals	Simulating the reaction pathway in synthesis	Optimizing the production process of chemicals	Simulating meso - scale reactor processes	Predicting the properties of new chemicals	Solving fluid dynamics in reaction vessels	Protecting data related to IP and trade secrets
Energy	Designing new materials for carbon capture	Optimizing power dispatching in an electric grid	Forecasting energy prices in the market	Predicting energy production from weather patterns	Solving DC power flow calculations in electrical grids	Protecting access to data on grid infrastructure
Telecom	Designing new semiconductor materials	Optimizing antenna placement	Stress - testing network resilience	Improving customer segmentation	Solving EM-field calculations in antenna design	Protecting the data exchanged over a network
Advanced manufacturing industries	Designing new batteries for electric vehicles	Optimizing the step sequence in car production	Improving the resilience of the supply chain	Improving fault detection in chip manufacturing	Solving aerodynamics simulations	Protecting communication connections
Logistics	N/A	Optimizing the route of a delivery service	Stress - testing logistic schedules for disruptions	Predicting maintenance needs in a fleet	Improving inventory management	Protecting personalized customer data
Finance	N/A	Optimizing the value of an asset portfolio	Modelling credit value at risk in capital allocation	Improving the detection of fraud in transactions	Estimating risk for the future value of an asset	Protecting customer transaction data

Figure 16: Overview of major quantum use cases, by industry sector and type of quantum algorithm. Source: ALICE & BOB.

DANISH CINFRASTRUCTURE CONSORTIUM

Interface with AI – Quantum Machine Learning

Section 9: Quantum Interface with AI - covering topics such as

- Introduction to AI and Bechmark index
- Motivation to QML
- Quantum Neural Networks (QNNs)
- Quantum Kernel Methods
- HHL Algorithm as QML subroutines

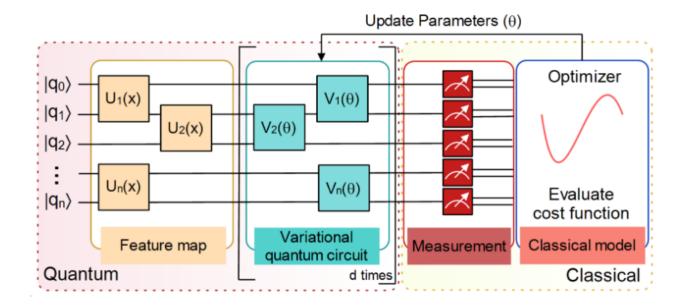


Figure 59: Schematic representation of a variational quantum circuit (VQC). These quantum components are coupled with a classical optimization routine, forming an iterative hybrid quantum–classical learning loop [131]

The guide provides both conceptual overviews and practical examples for researchers exploring AI + Quantum synergies.

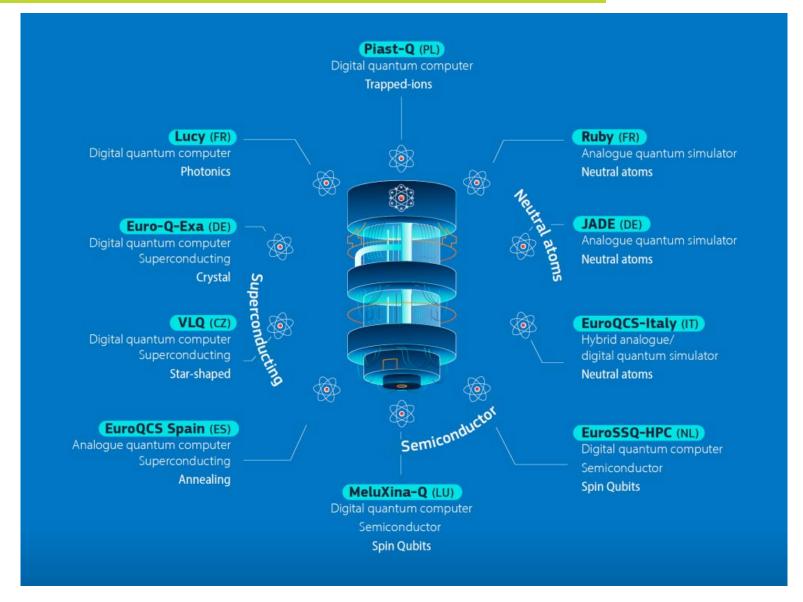
DANISH eINFRASTRUCTURE CONSORTIUM

3. LUMI-Q Consortium and the New Quantum Computer "VLQ"

Overview of LUMI Consortium

 The European High-Performance Computing Joint Undertaking (EuroHPC JU) has been pooling European resources to develop a variety of supercomputers for processing big data, based on competitive European technology.

- **LUMI**, which is in CSC's data center in Kajaani, Finland, is one such supercomputer and is hosted by the **LUMI consortium**.
- The LUMI (Large Unified Modern Infrastructure) consortium countries are Finland, Belgium, the Czech Republic, Denmark, Estonia, Iceland, the Netherlands, Norway, Poland, Sweden, and Switzerland.


Overview of LUMI Architecture

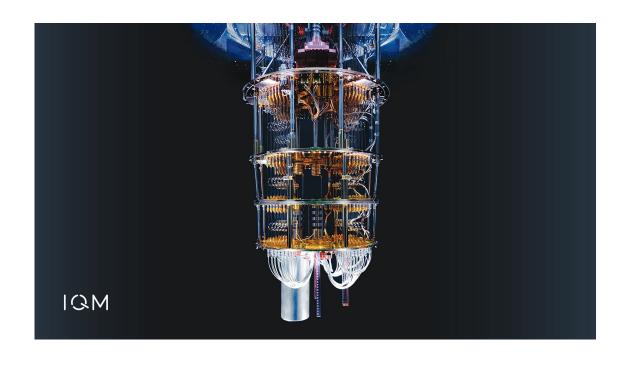
EuroHPC JU Quantum Computers

Overview of LUMI-Q

VLQ, the quantum computer of the LUMI-Q consortium, will provide a European-wide quantum computing environment **integrated with the EuroHPC infrastructure**. VLQ will allow the integration of the targeted EuroHPC quantum computer into EuroHPC supercomputer **KAROLINA** in Czechia, **LUMI** in Finland, and **EHPCPL** in Poland.

LUMI-Q CONSORTIUM MEMBERS

- · Coordinator: VSB Technical University of Ostrava, IT4Innovations National Supercomputing Center, Czechia
- CSC IT Center for Science, Finland
- · VTT Technical Research Centre of Finland Ltd, Finland
- Chalmers University of Technology, Sweden
- Danish e-Infrastructure Consortium (DeiC), Denmark
- Akademickie Centrum Komputerowe Cyfronet AGH, Poland
- Nicolaus Copernicus Astronomical Center, Poland
- Sigma2 AS, Norway
- Simula Research Lab, Norway
- SINTEF AS, Norway
- University of Hasselt, Belgium
- TNO Netherlands Organisation for Applied Scientific Research, the Netherlands
- · SURF BV, the Netherlands


ARCHITECTURE

- at least 24 physical qubits,
- the star-shape topology,
- · the total cost of the system is EUR 5.0 million,
- · integrated into the EuroHPC supercomputer KAROLINA,
- · IQM Quantum Computers, supplier of systems,
- installation and commissioning will take place in 2025.

Overview of IQM

- IQM is the leading European quantum hardware company in superconducting circuits, headquartered in Espoo, Finland.
- IQM builds superconducting full-stack quantum computers with up to 150 highfidelity qubits.
- Currently, IQM has some* QPU access available through AWS (Amazon Braket).

Industrial and Academic Customers

Overview of IQM

	2022	2023	2024	2025	2026	2027	2028	2030	2031	2033+
	Foundation			Quantum Utility			Quantum Advantage			
Simulation \$28bn value in 2030		and simulations of Is	zed molecular simulations (e.g., H2O, LiH, BeH2) sing and fermion models nulation of battery electrolytes		Medium size molecular simulations and new quantum materials for battery optimization and carbon capture			Drug discovery, catalyst and fertilizers design, carbon capture Development of novel quantum materials, battery materials and energy storage		
Optimization \$18bn value in 2030	System benchmarking, noise characterisation	Proof of concept: por optimization, train so	Proof of concept: power plant maintenance scheduling, Product portfolio optimization, train scheduling			Medium size problems: portfolio optimization, traveling salesperson and graph coloring problems			Advanced logistics and routing, energy grid optimization, risk management, infrastructure planning, telecom and data center management Global supply chain and transport, glob energy systems	
Quantum Machine Learning \$26bn value in 2030	Proof of concept: pn fraud detection		edicting chemical reaction behaviour,		Anomaly detection, feature selection, quantum data encoding, drug discovery, image generation			Bio data generation for training, drug-discovery, personalized medicine, complex market dynamics modelling, optimizing trading strategies, smart cities and autonomous systems		
Software	Stand	nd-alone	Loose HPC integration	HPC integration guidebook	Tight HPC integration Realtime encoding of		fQLDPC code			
Platform	algorithm execution		Pulse-level access	Open architecture and programming framework for developers and partners			partners			
Processor Layout		\Diamond		\langle	00					
			NISQ			QEC Der	nonstrators		Fault Tolerance	
Performance	99.8%	99.8%	99.9% Two-qubit gate fidelity	99.92%	99.94%	10 -5	10 -6	10 ⁻⁷ Logical error rate	10 -8	10 -9
Qubit Crystal Topology	5	20	54	150	300 150 × 2	1k	5k	40k	100k	1M
count Star Topology			6	24 46	150	IK	J. J.	400	IOUR	1171
Logical qubits		Tes	tbeds for 1-2 logical qu	bits		4-36	60-180	240-720	600-1800	2400-7200

Overview of IT4I

DeiC

- In the Czech Republic, IT4I is the leading research, development, and innovation centre active in the fields of HPC, QC, AI, and their application to other scientific fields, industry, and society.
- IT4I operates the most powerful supercomputing systems in the Czech Republic, including KAROLINA, which are provided to Czech and foreign research teams from both academia and industry.

PUT INTO OPERATION	summer 2021
THEORETICAL PEAK PERFORMANCE	15,690 Tflop/s
OPERATING SYSTEM	Rocky Linux 8.9
COMPUTE NODES	831

	total		
PU	720x 2x AMD 7H12, 64 cores	s, 2,6 GHz, 92,160 cores	in

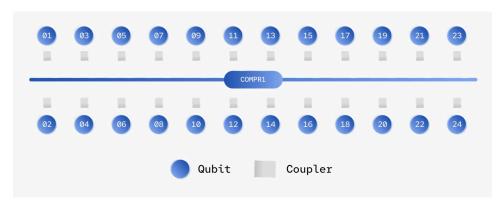
72x 2x AMD 7763, 64 cores, 2,45 GHz, 9,216 cores in

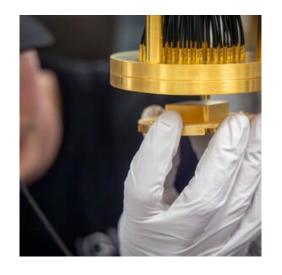
total

72x 8x NVIDIA A100 GPU, 576 GPU in total

32x Intel Xeon-SC 8628, 24 cores, 2,9 GHz, 768 cores in

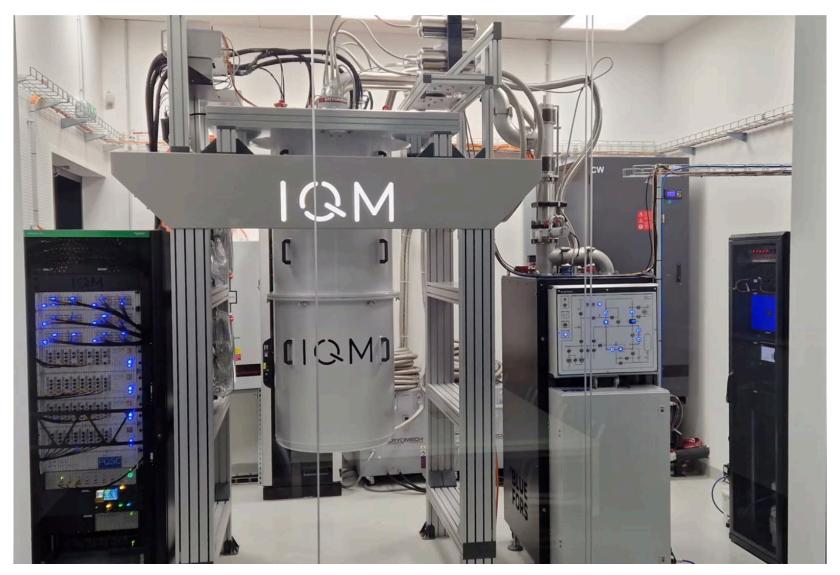
total


36x 2x AMD 7H12, 64 cores, 2,6 GHz, 4,608 cores in total 2x 2x AMD 7452, 32 cores, 2,35 GHz, 128 cores in total

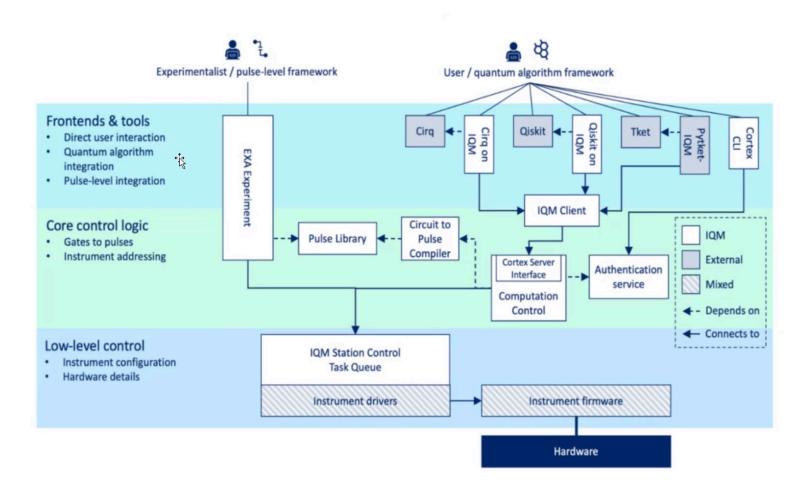

RAM PER COMPUTE	256 GB / 1 TB (GPU) / 24 TB fat node 320 GB HBM2 (8 x 40 GB) GPU
ACCELERATORS	576x NVIDIA A100
STORAGE	30.6 TB / home (1.93 GB/s sequential write performance, 3.10 GB/s sequential read performance), 1,361 TB / scratch (NVMe, 730.9 GB/s sequential write performance, 1, 198.3 GB/s sequential read

Hardware Details of VLQ

- VLQ's contains a 24-qubit QPU based on superconducting transmon qubits designed for cuttingedge quantum research that requires high connectivity.
- A central resonator hub connects a large number of qubits, optimizing connectivity for highly interactive quantum processes and dramatically reducing the number of SWAP operations needed.



Hardware Details of VLQ



Software Details of VLQ

LUMI-Q MACHINE IMPLEMENTATION

5. Proof-of-concept Use Cases

Developing Proof-of-concept Use Cases

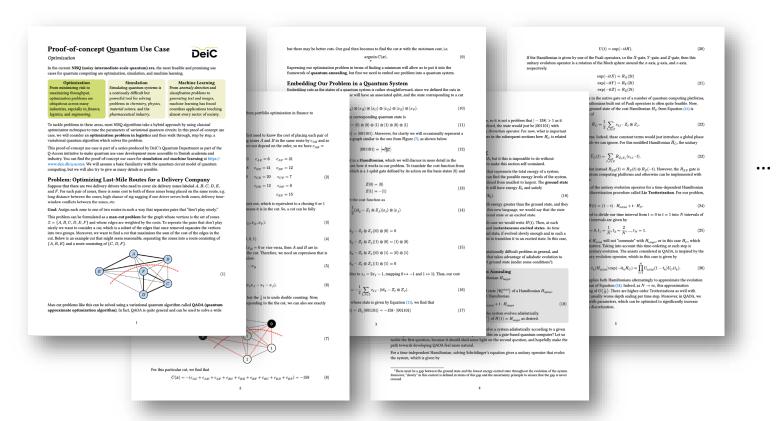
- We are currently in the **noisy intermediate-scale quantum (NISQ)** era, with QPUs not yet capable of **fault tolerance** or **quantum advantage**, but there are many algorithms with the great potential use cases.
- The most common class of NISQ algorithms are "variational algorithms" which leverage classical optimization of tunable parameters.
- DeiC is developing some simple proof-of-concept use cases (for both academia and industry) with stepby-step explanations of the thought process and implementation to help, especially Danish, users best utilize quantum computing resources.
- The three main areas for which DeiC is developing proof-of-concept use cases, and which seem the most promising, are **optimization**, **simulation**, **and machine learning**.

Optimization

From minimizing risk to maximizing throughput, optimizaiton problems are ubiquitous across many industries, espcially in *finance*, *logistics*, and *engineering*.

Simulation

Simulating quantum systems is a notriously difficult but powerful tool for solving problems in *chemistry*, *physics*, *material science*, and the *pharmaceutical industry*.

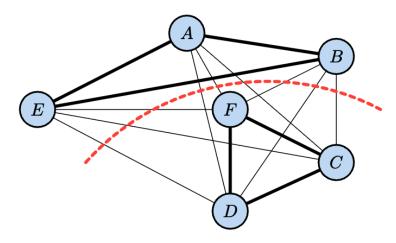

Machine Learning

From anomaly detection and classification problems to generating text and images, machine learning has found countless applications touching almost every sector of society.

Proof-of-concept Use Case: Optimization

- Practically speaking, these proof-of-concept quantum use cases include a step-by-step guide starting from the
 problem description, then formalizing and embedding the problem into a quantum system and finally
 describing and implementing a quantum algorithm to solve it.
- The first proof-of-concept use case that DeiC has developed is in optimization.

Proof-of-concept Use Case: Optimization



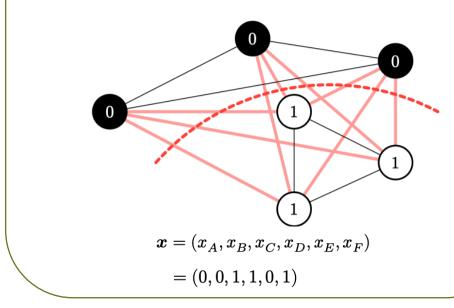
Problem: Optimizing Last-Mile Routes for a Delivery Company

Suppose that there are two delivery drivers who need to cover six delivery zones labeled A, B, C, D, E, and F. For each pair of zones, there is some cost to both of these zones being placed on the same route, e.g. long distance between the zones, high chance of zig-zagging if one driver serves both zones, delivery time-window conflicts between the zones, etc.

Goal: Assign each zone to one of two routes in such a way that separates pairs that "don't play nicely."

This problem can be formulated as a **max-cut problem** for the graph whose vertices is the set of zones $\mathcal{Z} = \{A, B, C, D, E, F\}$ and whose edges are weighted by the costs. To seperate the pairs that don't play nicely we want to consider a *cut*, which is a subset of the edges that once removed separates the vertices into two groups. Moreover, we want to find a cut that maximizes the sum of the cost of the edges in the cut. Below is an example cut that might seem reasonable, separating the zones into a route consisting of $\{A, B, E\}$ and a route consisting of $\{C, D, F\}$.

Precise Formulation of Our Problem



• The costs of including both zones in the same route are given below.

$$c_{AB}=17$$
 $c_{AC}=30$ $c_{AD}=10$ $c_{AE}=6$ $c_{AF}=31$ $c_{BC}=10$ $c_{BD}=18$ $c_{BE}=41$ $c_{BF}=12$ $c_{CD}=9$ $c_{CE}=20$ $c_{CF}=7$ $c_{DE}=12$ $c_{DF}=8$ $c_{EF}=15$

• Then, the cost function is given as follows:

This problem can be phrased as a **binary optimization** problem where 0 corresponds to one route and 1 to the other.

$$C(\boldsymbol{x}) = -\frac{1}{2} \sum_{I,J \in \mathcal{Z}} c_{IJ} \cdot (2x_I x_J - x_I - x_J)$$

$$C(\boldsymbol{x}) = -(c_{AC} + c_{AD} + c_{AF} + c_{BC} + c_{BD} + c_{BF} + c_{EC} + c_{ED} + c_{EF}) = -158$$

• Finally, the problem becomes to find the assignment which minimizes the cost:

 $\operatorname{argmin} C(oldsymbol{x})$

Embedding in a Quantum System

• Binary optimization problems are easy to embed in quantum systems:

$$|x
angle\coloneqq |x_A
angle\otimes |x_B
angle\otimes |x_C
angle\otimes |x_D
angle\otimes |x_E
angle\otimes |x_F
angle$$

$$|001101\rangle = \left| \begin{array}{c} \bullet \\ \bullet \\ \end{array} \right|$$

• Then, we can express our optimization problem as finding the ground state of a "cost Hamiltonian."

$$\begin{split} &\frac{1}{2}(\mathrm{id}_2 - Z_I \otimes Z_J)|0\rangle \otimes |0\rangle = 0 \\ &\frac{1}{2}(\mathrm{id}_2 - Z_I \otimes Z_J)|1\rangle \otimes |0\rangle = |1\rangle \otimes |0\rangle \\ &\frac{1}{2}(\mathrm{id}_2 - Z_I \otimes Z_J)|0\rangle \otimes |1\rangle = |0\rangle \otimes |1\rangle \\ &\frac{1}{2}(\mathrm{id}_2 - Z_I \otimes Z_J)|1\rangle \otimes |1\rangle = 0 \end{split}$$

$$H_C = -rac{1}{2} \sum_{I,J \in \mathcal{Z}} c_{IJ} \cdot (\operatorname{id}_2 - Z_I \otimes Z_J).$$

$$H_C | \boldsymbol{x} \rangle = H_C |001101\rangle = -158 \cdot |001101\rangle$$

Motivation from Quantum Annealing

We can find the ground state of our cost Hamiltonian using quantum annealing.

Outline of Quantum Annealing

Goal: Prepare the ground state $\left|\Psi_0^{\mathrm{target}}\right>$ of a given Hamiltonian H_{target} .

Strategy

- 1. Intialize the system in an easy-to-construct ground state $\ket{\Psi_0^{ ext{initial}}}$ of a Hamiltonian $H_{ ext{initial}}$.
- 2. Evolve the system according to the time-dependent Hamiltonian

$$H(t) = (1 - t) \cdot H_{\mathrm{initial}} + t \cdot H_{\mathrm{target}}$$

from time t = 0 to time t = 1 slowly enough that the system evolves adiabatically.

- 3. The system will now be in the ground state $\left|\Psi_0^{\mathrm{target}}\right>$ of $H(1)=H_{\mathrm{target}}$ as desired.
- While, this algorithm is not directly implementable on a gate-based system, but we can approximate it by the "first-order Trotterization."

$$U(1) \approx \prod_{i=1}^N \exp(-i(1-t_k)H_{\text{initial}}) \exp(-it_k H_C) = \prod_{i=1}^N U_{\text{initial}}(1-t_k) U_C(t_k)$$

Quantum Approximate Optimization Algorithm

 We start with the "easy-to-construct" superposition of all possible cuts.

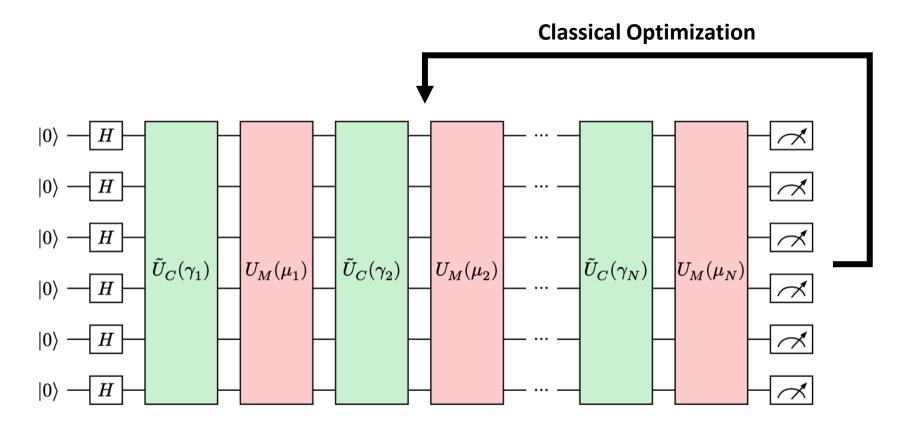
$$H|0
angle=|+
angle=rac{1}{\sqrt{2}}|0
angle+rac{1}{\sqrt{2}}|1
angle$$

$$|\Psi_0^M\rangle = H \otimes H \otimes H \otimes H \otimes H \otimes H |000000\rangle = |++++++\rangle$$

• The Hamiltonian for which this is the ground state is called the "mixer Hamiltonian," and its unitarian evolution operator are given as follows.

$$H_M = -\sum_{I \in \mathcal{I}} X_I = -(X_A + X_B + X_C + X_D + X_E + X_F)$$

$$U_M(-t) = \bigotimes_{I \in \mathcal{Z}} R_{X_I}(2t) = R_{X_A}(2t) \otimes R_{X_B}(2t) \otimes R_{X_C}(2t) \otimes R_{X_D}(2t) \otimes R_{X_E}(2t) \otimes R_{X_F}(2t)$$


We can use a simplified version of the cost Hamiltonian as follows.

$$\tilde{H}_C = \frac{1}{2} \sum_{I,J \in \mathcal{Z}} c_{IJ} \cdot Z_I \otimes Z_J \qquad \qquad \tilde{U}_C(t) = \sum_{I,J \in \mathcal{Z}} R_{Z_I Z_J}(c_{IJ} \cdot t)$$

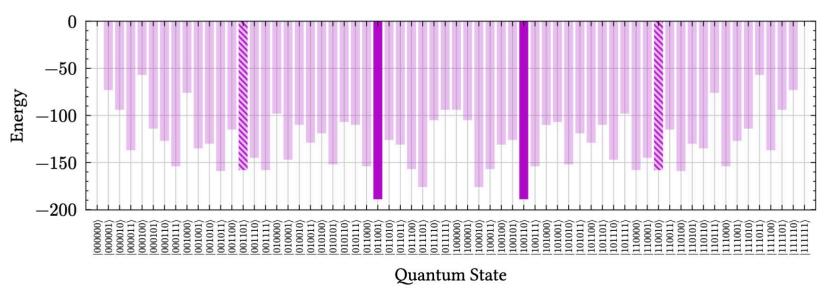
Quantum Approximate Optimization Algorithm

- The QAOA algorithm treats the time-steps from the first-order Trotterization as tunable parameters.
- The parametrized circuit is then **optimized using classical optimization techniques**.
- After optimization, the circuit should **output approximate solutions with higher probability**.

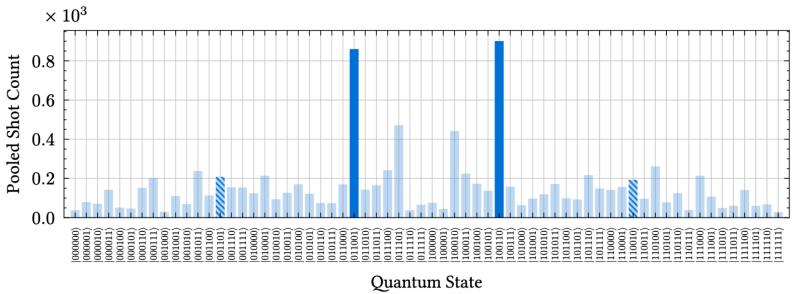
Qiskit Implementation of QAOA

We can implement this parametrized circuit using Qiskit and optimize it with SciPy.

```
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
   from qiskit.circuit import Parameter
  from qiskit.quantum_info import SparsePauliOp
 from qiskit_aer.primitives import Estimator
 from qiskit_aer import AerSimulator
  from scipy.optimize import minimize
.0 from numpy import pi
  cost matrix = [
   [ 0, 17, 30, 10, 6, 31],
    [17, 0, 10, 18, 41, 12],
    [30, 10, 0, 9, 20, 7],
    [10, 18, 9, 0, 12, 8],
    [ 6, 41, 20, 12, 0, 15],
    [31, 12, 7, 8, 15, 0],
 steps = 5
 def cost_Hamiltonian_block(n, cost_matrix, param):
      sub = QuantumCircuit(n, name="U_C")
      for i in range(n):
          for j in range(i + 1, n):
              sub.rzz(cost_matrix[i][j] * param, i, j)
      return sub.to gate()
  def mixing_Hamiltonian_block(n, param):
      sub = QuantumCircuit(n, name="U_M")
      sub.rx(param, range(n))
      return sub.to_gate()
 n = len(cost matrix)
  gamma = [Parameter(f''M{i}'') for i in range(steps)]
  mu = [Parameter(f''\mu\{i\}'') \text{ for } i \text{ in } range(steps)]
```

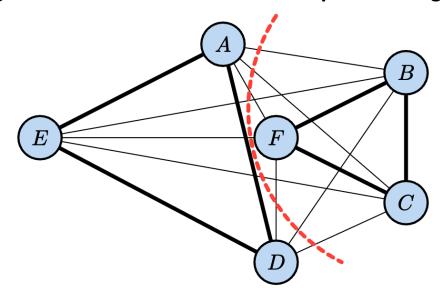

```
qr = QuantumRegister(n, name="x")
cr = ClassicalRegister(n)
gc = QuantumCircuit(qr, cr)
qc.h(qr)
for i in range(steps):
   gc.append(cost Hamiltonian block(n, cost matrix, gamma[i]), qr)
   qc.append(mixing_Hamiltonian_block(n, mu[i]), qr)
qc.measure(qr, cr)
max_cost = max(map(max, cost_matrix))
H_C = 0.5 * SparsePauliOp.from_list(
            "I" * (i) + "Z" + "I" * (j - i - 1) + "Z" + "I" * (5 - j),
            cost_matrix[i][j] / max_cost,
        for i in range(n)
        for j in range(i + 1, n)
estimator = Estimator()
    val = estimator.run(qc, H_C, parameter_values=params).result().values[0]
initial_params = [pi] * steps + [pi / 2] * steps
optimum = minimize(cost, x0=initial_params, method="Powell")
optimal_params = optimum.x
optimal_qc = qc.assign_parameters(optimal_params)
sim = AerSimulator()
result = sim.run(optimal_qc.decompose(), shots=1_000).result()
counts = result.get_counts()
```

• **Follow-up:** Demonstration of implementation on VLQ (with LEXIS, QProvider, etc.)!


Results

 Just looking at the energy landscape, we can see that there are several states with energy near the ground state energy (i.e. approximate solutions).

 After optimizing and sampling the circuit (several times and pooling the results), we can see that the ground state becomes the most probable measurement.

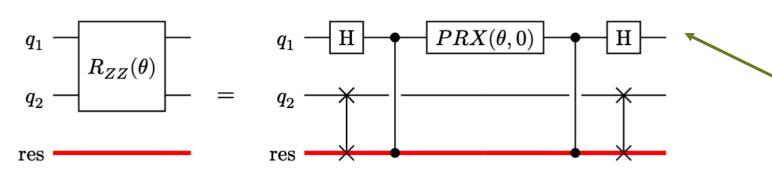

Results

 Because of the symmetry built into our problem, there are two ground states that correspond to the same cut.

$$\mathcal{G}(H_C) = \left\{ \left| \bigodot \right\rangle = \left| 011001 \right\rangle, \left| \bigodot \right\rangle = \left| 100110 \right\rangle
ight\}$$

• The ground state has energy -189 which is about 20% lower than our original guess (which had an energy of -158), and the corresponding cut which is the solution to our problem is given below.

DANISH PINEPASTRUCTURE CONSORTIUM


Implementation on VLQ (IQM Star 24)

• The native one-qubit gate for the IQM Star 24 QPU is the phased X-rotation gate.

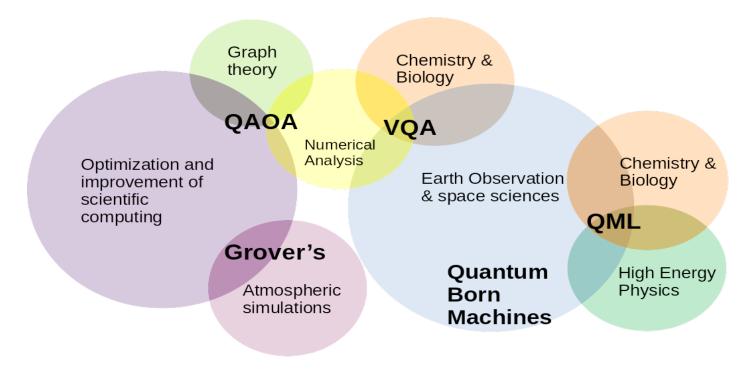
$$PRX(\theta,0) = R_X(\theta)$$

$$PRX(\theta,0) = R_X(\theta)$$

$$PRX(\theta,\pi/2) = R_Y(\theta)$$

$$PRX(-\pi,0)PRX(\pi,-\theta/2) = R_Z(\theta)$$

- The native two-qubit gate is the controlled Z-gate (after a "move" to the resonator).
- So, the only gate we need to convert is the RZZ-gate, which can be done as follows.

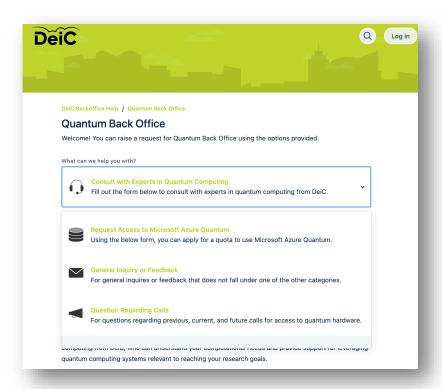

Note: Almost all Hadamard gates will be cancelled or absorbed, and the remaining contribute two PRX-gates each.

• **IQM Pulla** allows users to generate and execute pulse-level instructions on their quantum computers, which could potentially help eke out even more performance.

Further Proof-of-concept Use Cases

Besides the proof-of-concept use cases in simulation and machine learning that DeiC is developing,
 there are a wide variety of applications that LUMI-Q partners are working on.

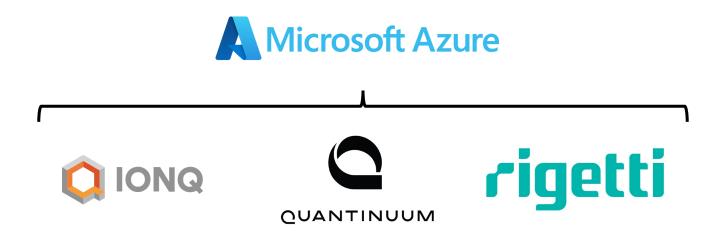
Goal: Help both Danish academia and industry* find practical ways to use LUMI-Q VLQ as well as all the other resources that are available!



6. Q-Access

Consulting with Quantum Experts

DeiC


- DeiC provides consulting with experts in quantum computing, who can understand your computational needs and provide support for leveraging quantum computing systems relevant to reaching your research goals.
- These services can be utilized by both universities, industry, and the public sector.
- These experts can provide advice and share technical expertise on porting and optimizing applications for quantum computing environments and offer guidance on software development as needed.
- DeiC is now offering **weekly Office Hours** as well to make it easier to drop in and ask questions.
- There are also **Jira Forms** for questions regarding calls, for general inquiry or feedback, and for requesting sandbox access to hardware!

Sandbox Access to Quantum Hardware

- Currently, sandbox access to Microsoft Azure for testing worth up to **25.000 DKK** can be applied for by filling out a simple form at: https://deic-backoffice.atlassian.net/servicedesk/customer/portal/3/group/4/create/35
- DeiC will evaluate and respond to your application within a week.
- Users can reapply after they use their allocated resources for a total of 100.000 DKK.

- IBM and Amazon Braket sandbox access are currently under development. More details coming soon!
- This sandbox access can also be used in conjunction with Ucloud resources for testing hybrid algorithms.

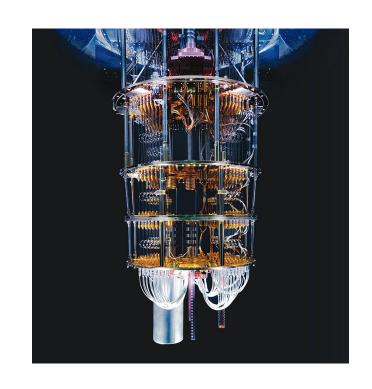
Calls for Specialized Access

- For access to specific quantum hardware and corresponding hardware-specific simulators via one of the calls for quantum access, there is a pool of 11.000.000 DKK.
- See https://www.deic.dk/da/quantum-technology/grants-and-funding for active and previous calls!

Active calls:

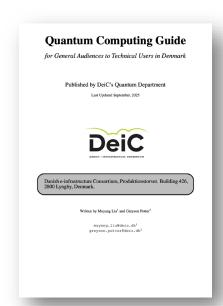
Access to quantum computing resources for researchers at Danish universities

Call opens: September 12, 2025

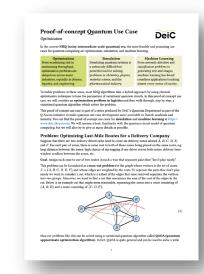

Call closes: October 31, 2025

- Full Call Description
- Application Template

Access to LUMI-Q VLQ and EuroHPC JU



- LUMI-Q VLQ will be an **additional access option provided by Q-Access** to Danish academia.
- DeiC will provide **onboarding sessions and consulting** to help Danish academia take full advantage of VLQ.
- The close HPC integration and pulse-level access will open new possibilities for applications and diversify DeiC's Q-Access offering.
- Direct access to the LUMI-Q VLQ quantum computer, through DeiC's participation in the LUMI-Q Consortium, will be available through a call for applications in early 2026.
- 50% of VLQ access will also be available through EuroHPC, along with the the other quantum computers partially financed by the EuroHPC Joint Undertaking.



Guides and Tutorials

- Overview published by DeiC's Q-Access team to provide a clear and understandable description of the quantum computing resource available to users in Denmark as well as tutorials and guides of how to use them.
- Designed to be useful to both non-technical audiences (policymakers, journalists, and industry leaders) and professional quantum computing users both inside and outside Denmark.
- Begins with an introduction to quantum computing principles, followed by descriptions of different quantum devices, real-world applications, and tutorials for accessing and using resources.
- DeiC is developing some simple proof-of-concept use cases (for both academia and industry) with step-by-step explanations of the thought process and implementation to help, especially Danish, users best utilize quantum computing resources.
- Proof-of-concept use case for optimization is available, with proof-of-concept use cases in simulation and machine learning coming by the end of 2025!

DeiC Q-Access Roadshow

October 22, 2025

Resources

- Q-Access Website: https://deic.dk/da/q-access
 - Quantum Computing Guide and Proof-of-concept Use Cases
 - Consulting Service, Office Hours, Inquiry Forms, Calls
- LUMI-Q VLQ: https://www.it4i.cz/en/infrastructure/vlq-quantum-computer
- IBM Quantum Learn: https://learning.quantum.ibm.com/
- Qiskit Documentation: https://docs.quantum.ibm.com/
- Microsoft Azure Documentation: https://learn.microsoft.com/en-us/azure/quantum/
- Xanadu's Strawberry Fields: https://strawberryfields.ai/
- Tensorflow Quantum Machine Learning: https://www.tensorflow.org/quantum

DeiC Q-Access Roadshow

October 22, 2025

Thank you all for listening!

Stick around for a Q&A session.